Article contents
A linear set of infinite measure with no two points having integral ratio
Published online by Cambridge University Press: 26 February 2010
Extract
It is not difficult to construct an unbounded set E on the positive real line such that, if x1, x2 belong to E, then x1/x2 is never equal to an integer. Our object is to show that it is possible to find such a set E which is measurable and of infinite Lebesgue measure. We were led to consider this problem through a study of those sets E, which are of infinite measure, yet, for each x > 0, nx є E for only a finite number of integers n. Sets of this type were first discovered by C. G. Lekkerkerker [2]. The set that we consider has both these properties. For another result on lattice points in sets of infinite measure see [1].
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1970
References
- 8
- Cited by