Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T21:17:01.803Z Has data issue: false hasContentIssue false

Large irregularities in sets of multiples and sieves

Published online by Cambridge University Press:  26 February 2010

R. R. Hall
Affiliation:
Department of Mathematics, University of York, Heslington, York, YO1 5DD
Get access

Extract

Let A = {ala2,…, an} be a finite set of (not necessarily distinct) positive integers and

be the corresponding set of multiples. My primary object here is to show that in fairly general circumstances there are significant irregularities in B(A), regarded as an ordered sequence.

Type
Research Article
Copyright
Copyright © University College London 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Besicovitch, A. S.. On the density of certain sequences. Math. Annalen, 220 (1934), 336341.Google Scholar
2.Buchstab, A. A.. Asymptotic estimates of a general number-theoretic function (Russian). Mat. Sbornik (2), 44 (1937), 12391246.Google Scholar
3.Bruijn, N. G. de. On the number of uncancelled elements in the sieve of Eratosthenes. Nederl. Akad. Wetensch. Proc, 53 (1950), 803812.Google Scholar
4.Erdos, P.. Note on the sequences of integers none of which are divisible by any other. J London Math. Soc, 10 (1935), 125128.Google Scholar
5.Franel, J.. Les suites de Farey et le probleme des nombres premiers. Gottinger Nachrichten, (1924), 198201.Google Scholar
6.Halberstam, H. and Roth, K. F.. Sequences (Oxford, 1966).Google Scholar
7.Hall, R. R.. The distribution of squarefree numbers. J. reine angew. Math., 394 (1989), 107117.Google Scholar
8.Hall, R. R. and Tenenbaum, G.. Divisors, Cambridge Tracts in Mathematics 90 (Cambridge, 1988).Google Scholar
9.Perelli, A. and Zannier, U.. An extremal property of the Möbius function. Arch. Math., 53 (1989), 2029.CrossRefGoogle Scholar
10.Tenenbaum, G.. Sur la probabilite qu'un entier possede un diviseur dans un intervalle donné. Compositio Math., 51 (1984), 243263.Google Scholar