Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T23:12:32.716Z Has data issue: false hasContentIssue false

Hilbert function and fractional powers

Published online by Cambridge University Press:  26 February 2010

Juan Elias
Affiliation:
Departament d'Algebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain. E-mail:[email protected]
Get access

Extract

Let R be a Noetherian local ring with maximal ideal m and lull ring of fractions Q. In this paper we consider a numerical function EHI: ℤ → ℤ, where I is an m-primary ideal of R, that coincides with the Hilbert function HI for positive values and that takes account of the fractional powers of I for negative values. We focus our attention on the one-dimensional case. Among other results we characterize one-dimensional Gorenstein local rings by means of the symmetry of EHR in Theorem 2.1, we show that the extended Hilbert function is not determined by the Hilbert function in Example 2.2. and we generalize to m-primary ideals the upper bound for e1(m) given by Matlis for the maximal ideal.

Type
Research Article
Copyright
Copyright © University College London 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bass, H.. On the ubiquity of Gorenstein rings. Math. Z., 82 (1963), 828.CrossRefGoogle Scholar
2.Elias, J.. Characterization of the Hilbert-Samuel polynomials of curve singularities. Compositio Math., 74 (1990). 135155.Google Scholar
3.Elias, J.. The Hilbcrt function of m-primary ideals. Preprint (2001).Google Scholar
4.Elias, J.. On the deep structure of the blowing-up of curve singularities. Math. Proc. Camb. Phil. Soc., 131 (2001). 227240.Google Scholar
5.Kirby, D.. The defect of a one-dimensional local ring. Mathematika, 6 (1959), 9197.CrossRefGoogle Scholar
6.Kirby, D.. The reduction number of a one-dimensional local ring, J. London Math. Sot., 10 (1975). 471481.CrossRefGoogle Scholar
7.Lipman, J.. Stable ideals and Arf rings. Amer. J. Math., 93 (1971), 649685.CrossRefGoogle Scholar
8.Matlis, E.. 1-dimensional Cohen-Macaulay rings. L.N.M. Springer Verlag, 327 (1977).Google Scholar
9.Northcott, D.G.. The reduction number of a one-dimensional local ring. Mathematika, 6 (1959), 8790.Google Scholar