Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T14:47:19.993Z Has data issue: false hasContentIssue false

HELSON’S PROBLEM FOR SUMS OF A RANDOM MULTIPLICATIVE FUNCTION

Published online by Cambridge University Press:  21 October 2015

Andriy Bondarenko
Affiliation:
Department of Mathematical Analysis, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01033 Kyiv, Ukraine Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway email [email protected]
Kristian Seip
Affiliation:
Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway email [email protected]
Get access

Abstract

We consider the random functions $S_{N}(z):=\sum _{n=1}^{N}z(n)$, where $z(n)$ is the completely multiplicative random function generated by independent Steinhaus variables $z(p)$. It is shown that $\mathbb{E}|S_{N}|\gg \sqrt{N}(\log N)^{-0.05616}$ and that $(\mathbb{E}|S_{N}|^{q})^{1/q}\gg _{q}\sqrt{N}(\log N)^{-0.07672}$ for all $q>0$.

Type
Research Article
Copyright
Copyright © University College London 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayyad, A., Cochrane, T. and Zheng, Z., The congruence x 1x 2 = x 3x 4 (mod p), the equation x 1x 2 = x 3x 4 , and mean values of character sums. J. Number Theory 59 1996, 398413.CrossRefGoogle Scholar
Bondarenko, A., Heap, W. and Seip, K., An inequality of Hardy–Littlewood type for Dirichlet polynomials. J. Number Theory 150 2015, 191205.CrossRefGoogle Scholar
Chatterjee, S. and Soundararajan, K., Random multiplicative functions in short intervals. Int. Math. Res. Not. IMRN 2012 2012, 479492.CrossRefGoogle Scholar
Duren, P. L., Theory of H p Spaces, Academic Press (New York, 1970); reprinted by Dover (Mineola NY, 2000).Google Scholar
Halász, G., On random multiplicative functions. In Proceedings of the Hubert Delange Colloquium (Orsay, 1982), Publ. Math. Orsay (Univ. Paris XI, 1983), 7496.Google Scholar
Harper, A. J., On the limit distributions of some sums of a random multiplicative function. J. Reine Angew. Math. 678 2013, 95124.Google Scholar
Harper, A. J., Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function. Ann. Appl. Probab. 23 2013, 584616.CrossRefGoogle Scholar
Harper, A. J., Nikeghbali, A. and Radziwiłł, M., A note on Helson’s conjecture on moments of random multiplicative functions. In Analytic Number Theory: In Honor of Helmut Maier’s 60th Birthday, Springer (2015).Google Scholar
Helson, H., Hankel forms and sums of random variables. Studia Math. 176 2006, 8592.CrossRefGoogle Scholar
Helson, H., Hankel forms. Studia Math. 198 2010, 7984.CrossRefGoogle Scholar
Ortega-Cerdà, J. and Seip, K., A lower bound in Nehari’s theorem on the polydisc. J. Anal. Math. 118 2012, 339342.CrossRefGoogle Scholar
Saksman, E. and Seip, K., Integral means and boundary limits of Dirichlet series. Bull. Lond. Math. Soc. 41 2009, 411422.CrossRefGoogle Scholar
Selberg, A., Note on a theorem of L. G. Sathe. J. Indian Math. Soc. 18 1954, 8387.Google Scholar
Wintner, A., Random factorizations and Riemann’s hypothesis. Duke Math. J. 11 1944, 267275.CrossRefGoogle Scholar