Article contents
HAUSDORFF DIMENSION OF THE SET APPROXIMATED BY IRRATIONAL ROTATIONS
Published online by Cambridge University Press: 14 February 2018
Abstract
Let $\unicode[STIX]{x1D703}$ be an irrational number and
$\unicode[STIX]{x1D711}:\mathbb{N}\rightarrow \mathbb{R}^{+}$ be a monotone decreasing function tending to zero. Let
$$\begin{eqnarray}E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})=\{y\in \mathbb{R}:\Vert n\unicode[STIX]{x1D703}-y\Vert <\unicode[STIX]{x1D711}(n),\text{for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$
$\unicode[STIX]{x1D711}(n)$. In this article, we give a complete description of the Hausdorff dimension of
$E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})$ for any monotone function
$\unicode[STIX]{x1D711}$ and any irrational
$\unicode[STIX]{x1D703}$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2018
References
- 4
- Cited by