We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Let $\unicode[STIX]{x1D703}$ be an irrational number and $\unicode[STIX]{x1D711}:\mathbb{N}\rightarrow \mathbb{R}^{+}$ be a monotone decreasing function tending to zero. Let
$$\begin{eqnarray}E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})=\{y\in \mathbb{R}:\Vert n\unicode[STIX]{x1D703}-y\Vert <\unicode[STIX]{x1D711}(n),\text{for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$
i.e. the set of points which are approximated by the irrational rotation with respect to the error function $\unicode[STIX]{x1D711}(n)$. In this article, we give a complete description of the Hausdorff dimension of $E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})$ for any monotone function $\unicode[STIX]{x1D711}$ and any irrational $\unicode[STIX]{x1D703}$.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Beresnevich, V. and Velani, S., A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2)164(3) 2006, 971–992.Google Scholar
2
Bernik, V. I. and Dodson, M. M., Metric Diophantine Approximation on Manifolds(Cambridge Tracts in Mathematics 137), Cambridge University Press (Cambridge, 1999).CrossRefGoogle Scholar
3
Bugeaud, Y., A note on inhomogeneous Diophantine approximation. Glasg. Math. J.452003, 105–110.Google Scholar
4
Fan, A. and Wu, J., A note on inhomogeneous Diophantine approximation with a general error function. Glasg. Math. J.48(2) 2006, 187–191.CrossRefGoogle Scholar
5
Fuchs, M. and Kim, D., On Kurzweil’s 0–1 law in inhomogeneous Diophantine approximation. Acta Arith.1732016, 41–57.Google Scholar
6
Halton, J. H., The distribution of the sequence n𝜉(n = 0, 1, 2, …). Proc. Cambridge Philos. Soc.611965, 665–670.Google Scholar
7
Kim, D., Refined shrinking target property of rotations. Nonlinearity27(9) 2014, 1985–1997.Google Scholar
8
Kuipers, L. and Niederreiter, H., Uniform Distribution of Sequences(Pure and Applied Mathematics), John Wiley & Sons (New York, 1974).Google Scholar
9
Kurzweil, J., On the metric theory of inhomogeneous Diophantine approximations. Studia Math.151955, 84–112.Google Scholar
10
Liao, L. and Rams, M., Inhomogeneous Diophantine approximation with general error functions. Acta Arith.1602013, 25–35.CrossRefGoogle Scholar
11
Minkowski, H., Diophantische Approximationen: Eine Einführung in die Zahlentheorie, Chelsea Publishing (New York, 1957).Google Scholar
12
Schmeling, J. and Troubetzkoy, S., Inhomogeneous Diophantine approximations and angular recurrence for billiards in polygons. Mat. Sb.1942003, 129–144.Google Scholar
13
Tseng, J., On circle rotations and the shrinking target properties. Discrete Contin. Dyn. Syst.20(4) 2008, 1111–1122.CrossRefGoogle Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Bárány, Balázs
and
Rams, Michał
2018.
Shrinking targets on Bedford-McMullen carpets.
Proceedings of the London Mathematical Society,
Vol. 117,
Issue. 5,
p.
951.