Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T18:20:12.600Z Has data issue: false hasContentIssue false

A generalized lower-bound conjecture for simplicial polytopes

Published online by Cambridge University Press:  26 February 2010

P. McMullen
Affiliation:
University College London. Washington University, St. Louis.
D. W. Walkup
Affiliation:
University College London. Washington University, St. Louis.
Get access

Extract

Let P be a simplicial d-polytope, and, for – 1 ≤ j < d, let fj(P) denote the number of j-faces of P (with f_1 (P) = 1). For k = 0, ..., [½d] – 1, we define

and conjecture that

gk(d + 1)(P) ≥ 0,

with equality in the k-th relation if and only if P can be subdivided into a simplicial complex, all of whose simplices of dimension at most dk – 1 are faces of P. This conjecture is compared with the usual lower-bound conjecture, evidence in support of the conjecture is given, and it is proved that any linear inequality satisfied by the numbers fj(P) is a consequence of the linear inequalities given above.

Type
Research Article
Copyright
Copyright © University College London 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnette, D. W., 1971, “The minimum number of vertices of a simple polytope ”, Israel J. Math., 9 (1971), 121125.CrossRefGoogle Scholar
Dehn, M., 1905, “Die Eulersche Formel in Zusammenhang mit dem Inhalt in der nicht-Euklidischen Geometrie ”, Math. Ann., 61 (1905), 561586.CrossRefGoogle Scholar
Grünbaum, B., 1967, Convex Polytopes (Wiley & Sons, London-New York-Sydney, 1967).Google Scholar
Grünbaum, B., 1970, “Polytopes, graphs and complexes ”, Bull. Amer. Math. Soc., 76 (1970), 11311201.CrossRefGoogle Scholar
Klee, V. L., 1964, “A combinatorial analogue of Poincaré's duality theorem ”, Canad. J. Math., 16 (1964), 517531.CrossRefGoogle Scholar
Mani, P., 1972, “Spheres with few vertices ”, J. Combinatorial Theory (to appear).CrossRefGoogle Scholar
McMullen, P., 1970, “The maximum numbers of faces of a convex polytope”, Mathematika, 17 (1970), 179184.CrossRefGoogle Scholar
McMullen, P., 1971a, “The minimum number of facets of a convex polytope ”, J. London Math. Soc. (2), 3 (1971), 350354.CrossRefGoogle Scholar
McMullen, P., 1971b, “The numbers of faces of simplicial polytopes ”, Israel J. Math., 9 (1971), 559570.CrossRefGoogle Scholar
McMullen, P., and Shephard, G. C., 1971, Convex polytopes and the upper-bound conjecture. London Math. Soc. Lecture Notes Series, Vol. 3 (1971).Google Scholar
Motzkin, T. S., 1957, “Comonotone curves and polyhedra ”, Abstract 111, Bull. Amer. Math. Soc., 63 (1957), 35.Google Scholar
Sommerville, D. M. Y., 1927, “The relations connecting the angle-sums and volume of a polytope in space of n dimensions ”, Proc. Roy. Soc. London, A, 115 (1927), 103119.Google Scholar
Tverberg, H., 1961, “Ageneralization of Radon's theorem ”, J. London Math. Soc. (1), 41 (1966), 123128.Google Scholar
Vaccaro, M., 1956, “Sulla caratteristica dei complessi simpliciali x-omogenei ”, Ann. Mat. Pura Appl. (4), 41 (1956), 120.CrossRefGoogle Scholar
Walkup, D. W., 1970, “The lower bound conjecture for 3- and 4-manifolds ”, Acta. Math., 125 (1970), 75107.CrossRefGoogle Scholar