Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T10:41:38.407Z Has data issue: false hasContentIssue false

Further solutions of the Falkner–Skan equation for β = – 1 and γ = 0

Published online by Cambridge University Press:  26 February 2010

C. M. Brauner
Affiliation:
Dépt. Math. Inform. Syst., Ecole Centrale de Lyon, 69181 Ecully Cedex, France
Cl. Lainé
Affiliation:
Dépt. Math. Inform. Syst., Ecole Centrale de Lyon, 69181 Ecully Cedex, France
B. Nicolaenko
Affiliation:
Center for Nonlinear Studies, Los Alamos National Laboratory, University of California, P.O. Box 1663, Los Alamos, New Mexico 87545, U.S.A.
Get access

Summary

We consider the Falkner–Skan equation

in the special case β = – 1. It is known that this equation may be integrated twice to get the Riccati equation

Type
Research Article
Copyright
Copyright © University College London 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abramowitz, M. and Stegun, I. A.. Handbook of Mathematical functions with formulas graphs and mathematical tables. Applied Mathematics, Series 55 (National Bureau of Standards, Washington D.C., 1965).Google Scholar
2.Brauner, C. M., Nicolaenko, B. and Ravier, P.. Étude théorique et numerique de l'equation de Falkner– Skan. Technical Report (Departement M.I.S., Ecole Centrale de Lyon, 1979).Google Scholar
3.Brauner, C. M. and Lainé, Cl.. Étude de phénomenès de bifurcation (points de retournement) en thoérie de la couche limite bidimensionnelle laminaire. Rapport de contrat DRET, 79/214 (1981).Google Scholar
4.Brauner, C. M. and Nicolaenko, B.. On nonlinear eigenvalue problems which extend into free boundary problems. Bifurcation and Nonlinear Eigenvalue Problems, Lect. Notes in Math., 782 (Springery–Verlag, 1980), 61100.CrossRefGoogle Scholar
5.Brown, S. N. and Stewartson, K.. On the reverse flow solutions of the Falkner–Skan equation. Mathematika, 13 (1966), 16.CrossRefGoogle Scholar
6.Cebeci, T. and Keller, H. B.. Shooting and parallel shooting methods for solving the Falkner–Skan boundary layer equation. J. Comp. Phys., 7 (1971), 289300.CrossRefGoogle Scholar
7.Coppel, W. A.. On a differential equation of boundary layer theory. Phil. Trans. Roy. Soc. London, 253 (1960), 101136.Google Scholar
8.Craven, A. H. and Peletier, L. A.. On the uniqueness of solutions of the Falkner–Skan equation, Mathematika, 19 (1972), 127131.Google Scholar
9.Craven, A. H. and Peletier, L. A.. Reverse flow solutions of the Falkner–Skan equation for λ > 1. Mathematika, 19 (1972), 135138.CrossRefGoogle Scholar
10.Goldstein, S.. On backward boundary layers and flow in converging passages. J. Fluid Mech., 21 (1965), 3345.CrossRefGoogle Scholar
11.Hartman, P.. Ordinary Differential Equations (Wiley, New York, 1964).Google Scholar
12.Hartman, P.. On the asymptotic behaviour of solutions of a differential equation in boundary layer theory. Z. Angew. Math. Mech., 44 (1964), 123128.CrossRefGoogle Scholar
13.Hartman, P.. Boundary value problems for second order ordinary differential equations involving a parameter. J. Biff. Eq., 12 (1972), 194212.CrossRefGoogle Scholar
14.Hartman, P.. Uniqueness of principal values, complete monotonicity of logarithmic derivatives of principal solutions, and oscillation theorems. Math. Ann., 241 (1979), 257281.CrossRefGoogle Scholar
15.Hastings, S. P.. Reversed flow solutions of the Falkner–Skan equation. SI AM J. Appl. Math., 22 (1972), 329334.CrossRefGoogle Scholar
16.Iglisch, R.. Elementarer Beweis fur die Eindeutigkeit der Stromung in der laminaren Grenzschicht zur Potentialstromung U = Ulxm mit m ≥ 0 bei Absaugen und Ausblasen. Z. Angew. Math. Mech., 34 (1954), 441443.CrossRefGoogle Scholar
17.Keller, H. B.. Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory, P. Rabinowitz Ed. (Academic Press, 1977).Google Scholar
18.Lainé, Cl and Reinhart, L.. Further numerical methods for the Falkner–Skan equation: Shooting and continuation techniques. Rapport de Recherche, 177 (INRIA, 1983). Submitted to Num. Meth. in Fluids.Google Scholar
19.Libby, P. A. and Liu, T. M.. Further solutions of the Falkner–Skan equation. A1AA J., 5 (1967), 10401042.Google Scholar
20.Mills, R. H.. A note on some accelerated boundary layer velocity profiles. J. Aero. Sci., 5 (1938), 325327.CrossRefGoogle Scholar
21.Moulden, T. H.. Comments on an exact solution of the Falkner–Skan equation. Z. Angew. Math. Mech., 59 (1979), 289295.CrossRefGoogle Scholar
22.Schlichting, H.. Boundary–Layer Theory, 6th ed. (McGraw-Hill, 1968).Google Scholar
23.Stewartson, K.. Further solutions of the Falkner–Skan equation. Proc. Camb. Phil. Soc, 50 (1954), 454465.CrossRefGoogle Scholar
24.Thwaites, B.. On two solutions of the boundary–layer equations. 50 Jahre Grenzschicht Forschung, Gostler, H. and Tallmien, W., Eds. (Vieweg, Braunschweig, 1955), 210215.CrossRefGoogle Scholar
25.Troy, W. C.. Non-monotonic solutions of the Falkner–Skan boundary layer equation. Q. Appl. Math., 37 (1979), 157167.CrossRefGoogle Scholar
26.Weyl, H.. On the differential equations of the simplest boundary layer problems. Ann. of Math., 43 (1942), 381407.CrossRefGoogle Scholar
27.Yang, H. T. and Chien, L. C.. Analytic solutions of the Falkner-Skan equation when β = – 1 and γ = 0. SIAM J. Appl. Math., 29 (1975), 558569.CrossRefGoogle Scholar