Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Fradelizi, M.
and
Meyer, M.
2007.
Some functional forms of Blaschke–Santaló inequality.
Mathematische Zeitschrift,
Vol. 256,
Issue. 2,
p.
379.
Fradelizi, M.
and
Meyer, M.
2008.
Some functional inverse Santaló inequalities.
Advances in Mathematics,
Vol. 218,
Issue. 5,
p.
1430.
Artstein-Avidan, Shiri
Einhorn, Keshet
Florentin, Dan I.
and
Ostrover, Yaron
2015.
On Godbersen’s conjecture.
Geometriae Dedicata,
Vol. 178,
Issue. 1,
p.
337.
Alonso-Gutiérrez, David
González Merino, Bernardo
Jiménez, C. Hugo
and
Villa, Rafael
2016.
Rogers–Shephard inequality for log-concave functions.
Journal of Functional Analysis,
Vol. 271,
Issue. 11,
p.
3269.
Madiman, Mokshay
Melbourne, James
and
Xu, Peng
2017.
Convexity and Concentration.
Vol. 161,
Issue. ,
p.
427.
Colesanti, Andrea
2017.
Convexity and Concentration.
Vol. 161,
Issue. ,
p.
487.
Fang, Niufa
and
Zhou, Jiazu
2018.
LYZ ellipsoid and Petty projection body for log-concave functions.
Advances in Mathematics,
Vol. 340,
Issue. ,
p.
914.
Madiman, Mokshay
and
Kontoyiannis, Ioannis
2018.
Entropy Bounds on Abelian Groups and the Ruzsa Divergence.
IEEE Transactions on Information Theory,
Vol. 64,
Issue. 1,
p.
77.
Alonso-Gutiérrez, David
Merino, Bernardo González
Jiménez, C. Hugo
and
Villa, Rafael
2018.
John’s Ellipsoid and the Integral Ratio of a Log-Concave Function.
The Journal of Geometric Analysis,
Vol. 28,
Issue. 2,
p.
1182.
Alonso-Gutiérrez, David
Artstein-Avidan, Shiri
González Merino, Bernardo
Jiménez, Carlos Hugo
and
Villa, Rafael
2019.
Rogers–Shephard and local Loomis–Whitney type inequalities.
Mathematische Annalen,
Vol. 374,
Issue. 3-4,
p.
1719.
Roysdon, Michael
2020.
Rogers-Shephard type inequalities for sections.
Journal of Mathematical Analysis and Applications,
Vol. 487,
Issue. 1,
p.
123958.
Alonso-Gutiérrez, David
Hernández Cifre, María A
Roysdon, Michael
Yepes Nicolás, Jesús
and
Zvavitch, Artem
2021.
On Rogers–Shephard Type Inequalities for General Measures.
International Mathematics Research Notices,
Vol. 2021,
Issue. 10,
p.
7224.
Alonso-Gutiérrez, David
Hernández Cifre, María A.
and
Yepes Nicolás, Jesús
2021.
Further inequalities for the (generalized) Wills functional.
Communications in Contemporary Mathematics,
Vol. 23,
Issue. 03,
p.
2050011.
Langharst, Dylan
Roysdon, Michael
and
Zvavitch, Artem
2022.
General measure extensions of projection bodies.
Proceedings of the London Mathematical Society,
Vol. 125,
Issue. 5,
p.
1083.
Fang, Niufa
Xing, Sudan
and
Ye, Deping
2022.
Geometry of log-concave functions: the $$L_p$$ Asplund sum and the $$L_{p}$$ Minkowski problem.
Calculus of Variations and Partial Differential Equations,
Vol. 61,
Issue. 2,
Fang, Niufa
and
Zhou, Jiazu
2022.
The Busemann-Petty problem on entropy of log-concave functions.
Science China Mathematics,
Vol. 65,
Issue. 10,
p.
2171.
Hofstätter, Georg C
and
Schuster, Franz E
2023.
Blaschke–Santaló Inequalities for Minkowski and Asplund Endomorphisms.
International Mathematics Research Notices,
Vol. 2023,
Issue. 2,
p.
1378.
Fang, Niufa
and
Zhou, Jiazu
2023.
Projection Body and Isoperimetric Inequalities for s-Concave Functions.
Chinese Annals of Mathematics, Series B,
Vol. 44,
Issue. 3,
p.
465.
Roysdon, Michael
and
Xing, Sudan
2023.
On the framework of L summations for functions.
Journal of Functional Analysis,
Vol. 285,
Issue. 12,
p.
110150.
da Silva, Letícia Alves
Merino, Bernardo González
and
Villa, Rafael
2023.
Some Remarks on Petty Projection of Log-concave Functions.
The Journal of Geometric Analysis,
Vol. 33,
Issue. 8,