Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T21:25:39.179Z Has data issue: false hasContentIssue false

Foundations of a theory of convexity on affine Grassmann manifolds

Published online by Cambridge University Press:  26 February 2010

Jacob E. Goodman
Affiliation:
City College, City University of New York, New York, NY 10031, U.S.A.
Richard Pollack
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, U.S.A.
Get access

Extract

The starting point for the present paper is the following question, which asks whether points can be replaced by flats (translates of linear subspaces of arbitrary dimension) as the basic objects in a convexity structure on ℝd.

Type
Research Article
Copyright
Copyright © University College London 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alon, N. and Kalai, G.. Bounding the piercing number. Discrete Comput. Geom., 13 (1995), 245256.CrossRefGoogle Scholar
2.Alon, N. and Kleitman, D. J.. Piercing convex sets and the Hadwiger Debrunner (p, q)-problem. Advances in Math., 96 (1992), 103112.CrossRefGoogle Scholar
3.Busemann, H., Ewald, G. and Shephard, G. C.. Convex bodies and convexity on Grassmann cones, I-XI. Abh. Math. Sent. Univ. Hamburg; Ann. Mat. Pura AppL; Arch. Math.; Enseignement Math.;J. London Math. Soc; Math. Ann.; Math. Scand. (1962, 1963, 1964, 1965, 1969).CrossRefGoogle Scholar
4.Cappell, S., Goodman, J. E., Pach, J., Pollack, R., Sharir, M. and Wenger, R.. Common tangents and common transversals. Advances in Math., 106 (1994), 198215.CrossRefGoogle Scholar
5.Erdos, P. and Szekeres, G.. A combinatorial problem in geometry. Compositio Math., 2 (1935), 463470.Google Scholar
6.Gluck, H. and Warner, F. W.. Great circle fibrations of the three-sphere. Duke Math. J., 50 (1983), 107132.CrossRefGoogle Scholar
7.Goodman, J. E. and Pollack, R.. Hadwiger's transversal theorem in higher dimensions. J. Amer. Math. Soc, 1 (1988), 301309.Google Scholar
8.Goodman, J. E., Pollack, R. and Wenger, R.. Geometric transversal theory. In New Trends in Discrete and Computational Geometry, edited by Pach, J. (Springer-Verlag, Berlin, 1993), 163198.CrossRefGoogle Scholar
9.Grünbaum, B.. Arrangements and Spreads (Amer. Math. Soc, Providence, 1972).CrossRefGoogle Scholar
10.Hadwiger, H., Debrunner, H. and Klee, V. L.. Combinatorial geometry in the plane (Holt, Rinehart and Winston, New York, 1964).Google Scholar
11.Hammer, P. C.. Maximal convex sets. Duke Math. J., 22 (1955), 103106.CrossRefGoogle Scholar
12.Hammer, P. C.. Semispaces and the topology of convexity. In Convexity, Proc. Symp. Pure Math., vol. 7 (Amer. Math. Soc, Providence, 1963), 305316.Google Scholar
13.Hodge, W. V. D. and Pedoe, D.. Methods of Algebraic Geometry, vol. II (Cambridge Univ. Press, Cambridge, 1952).Google Scholar
14.Klee, V. L.. The structure of semispaces. Math. Scand., 4 (1956), 5464.CrossRefGoogle Scholar
15.Kleiman, S. L. and Laksov, D.. Schubert calculus. Amer. Math. Monthly, 79 (1972), 10611082.CrossRefGoogle Scholar
16.Santalo, L.. Un teorema sobre conjuntos de paralelepipedos de aristas paralelas. Publ. Inst. Mat. Univ. Nac. Litoral, 2 (1940), 4960.Google Scholar