Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T04:49:05.307Z Has data issue: false hasContentIssue false

Finite Lattice Packings and the Wulff-Shape

Published online by Cambridge University Press:  21 December 2009

Ulrich Betke
Affiliation:
Mathematisches Institut, Universität Siegen, D-57068 Siegen, Germany. E-mail: [email protected]
Károly Böröczky Jr.
Affiliation:
Math Inst. Hung. Acad. Sci., Budapest Pf. 127, 1364Hungary. E-mail: [email protected]
Get access

Abstract

This paper treats finite lattice packings Cn + K of n copies of some centrally symmetric convex body K in Ed for large n. Assume that Cn is a subset of a lattice Λ, and ϱ is at least the covering radius; namely, Λ + ϱK covers the space. The parametric density δ(Cn, ϱ) is defined by δ(Cn, ϱ) = n · V(K)/V(convCn + ϱK). It is shown that, if δ(Cn, ϱ) is minimal for n large, then the shape of conv Cn is approximately given by Wulff's condition, well-known from crystallography. Thus maximizing parametric density is equivalent to optimizing a certain Gibbs–Curie energy. It is also proved that, in case of lattice packings of K (allowing any packing lattice), for large n the optimal shape with respect to the parametric density is approximately a Wulff-shape associated to some densest packing lattice of K.

Type
Research Article
Copyright
Copyright © University College London 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[ABB]Arhelger, V., Betke, U. and Böröczky, K. Jr., Large finite lattice packings, Mathematische Forschungsberichte Universität Siegen, 278. http://www.math-inst.hu/~carlos/abb.psGoogle Scholar
[BB]Betke, U. and Böröczky, K. Jr., Asymptotic formulae for the lattice point enumerator, to appear in Canad. J. Math. http://www.math-inst.hu/~carlos/bb.psGoogle Scholar
[BGW]Betke, U., Gritzmann, P. and Wills, J. M., Slices of L. Fejes Tóth's Sausage Conjecture, Mathematika 29 (1982), 194201.CrossRefGoogle Scholar
[BH]Betke, U. and Henk, M., Estimating sizes of a convex body by successive diameters and widths, Mathematika 39 (1992), 247257.CrossRefGoogle Scholar
[BHW1]Betke, U., Henk, M. and Wills, J. M., Finite and infinite packings, J. reine angew. Math. 453 (1994), 165191.Google Scholar
[BHW2]Betke, U., Henk, M. and Wills, J. M., Sausages are good packings, Discrete comput. xsGeom., 13 (1995), 297311.CrossRefGoogle Scholar
[BW]Betke, U. and Wills, J. M., Stetige und diskrete Funktionale konvexer Körper, Contributions to Geometry (Tölke, J. and Wills, J. M., eds.), Birkhäuser (Basel, 1979), 226237.CrossRefGoogle Scholar
[BF]Bonnesen, T. and Fenchel, W., Theorie der Konvexen Körper, Springer (Berlin, 1934).Google Scholar
[BS]Böröczky, K. Jr. and Schnell, U., Asymptotic shape of finite packings, Canad. J. Math. 50 (1998), 1628.CrossRefGoogle Scholar
[CS]Conway, J. H. and Sloane, N. J. A., Sphere Packings, Lattices and Groups, Springer-Verlag (Berlin, New York, 1989).Google Scholar
[D]Dinghas, A., Über einen geometrischen Satz von Wulff über die Gleichgewichtsform von Kristallen, Z. Kristallogr. 105 (1943), 304314.Google Scholar
[FGW]Tóth, G. Fejes, Gritzmann, P. and Wills, J. M., Finite sphere packing and sphere covering, Discrete Comput. Geom. 4 (1989), 1940.CrossRefGoogle Scholar
[FK]Tóth, G. Fejes and Kuperberg, W., Packing and covering (Chapter 3.3), Handbook of Convex Geometry (Gruber, P. M. and Wills, J. M., eds), North Holland, (Amsterdam, 1993).Google Scholar
[GW]Gritzman, P. and Wills, J. M., Finite packing and covering (Chapter 3.4), Handbook of Convex Geometry (Gruber, P.M. and Wills, J.M., eds), North Holland (Amsterdam, 1993).Google Scholar
[GL]Gruber, P. M. and Lekkerkerker, C. G., Geometry of Numbers, North Holland (Amsterdam, 1987).Google Scholar
[H]Henk, M., Finite and Infinite Packings, Habilitationsschrift, Universität Siegen (1995).Google Scholar
[P]Pinkus, A., n-Widths in approximation theory, Springer-Verlag, (Berlin, 1985).CrossRefGoogle Scholar
[R]Rogers, C.A., Packing and Covering, Cambridge Univ. Press (Cambridge, 1964).Google Scholar
[S]Schneider, R., Convex Bodies — the Brunn-Minkowski Theory, Cambridge Univ. Press (Cambridge, 1993).CrossRefGoogle Scholar
[Sc]Schnell, U., Periodic packings and Wulff-shape, to appear in Beiträge Algebra Geometrie.Google Scholar
[W1]Wills, J. M., Lattice packings of spheres and the Wulff-shape, Mathematika 43 (1996), 229236.CrossRefGoogle Scholar
[W2]Wills, J. M., On large lattice packings of spheres, Geometriae Dedicata 65 (1997), 117126.CrossRefGoogle Scholar
[W3]Wills, J. M., Zur Gitterpunktanzahl konvexer Mengen, Elem. Math. 28 (1973), 5763.Google Scholar