Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T05:27:40.328Z Has data issue: false hasContentIssue false

Denumerable compact metric spaces admit isometry-invariant finitely additive measures

Published online by Cambridge University Press:  26 February 2010

Roy O. Davies
Affiliation:
Department of Mathematics, The University, Leicester, LE1 7RH.
A. J. Ostaszewski
Affiliation:
Department of Mathematics, London School of Economics, Houghton Street, London, WC2A 2AE.
Get access

Extract

Let X be a compact metric space. By an invariant measure on X we shall mean a finitely additive non-negative real-valued function μ. on the Borel σ-algebra in X, such that μ(X) = 1 and Borel subsets of X have equal measure if there exists an isometry from one onto the other (not necessarily extendable to the whole of X). We note in passing that an isometric copy of a Borel set is necessarily itself Borel, by a well-known theorem of Souslin (see [3], §39. V). In Problem 2 of the Scottish Book (17. VII. 1935; see [2]), Banach and Ulam asked whether every non-empty compact metric space admits an invariant measure. This problem remains open; we give a positive answer in a veryspecial case.

Type
Research Article
Copyright
Copyright © University College London 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Banach, S.. Théorie des Opérations Linéaires. Monograjje Matematyczne (Warszawa-Lwow, 1932).Google Scholar
2.Banach, S. and Ulam, S. M.. “Problem P 34”, Colloq. Math., 1 (1948), 152153.Google Scholar
3.Kuratowski, C.. Topology, vol. I (Academic Press, New York, 1966).Google Scholar
4.Mazur, S.. “O metadoch sumowalnósci” (On summability methods), in Ksiega Pamiqtkowa I Polskiego Zjazdu Matematycznego [Lwów, 7–10. IX. 1927], Dodatek do Rocznika Polsk. Tow. Mat. (Supplément aux Annales de la Société Polonaise de Mathématique), 1929, 102–107. (Polish).Google Scholar
5.Mazurkiewicz, S. and Sierpiński, W.. “Sur un ensemble superposable avec chacune de ses deux parties”, C. R. Acad. Sci. Paris, 158 (1914), 618619; W. Sierpiński, Oeuvres Choisies, vol. II (PWN, Warsaw, 1975), 87–88.Google Scholar
6.Sierpiński, W.. “Sur la non-existence des décompositions paradoxales d'ensembles linéaires”, Adas Acad. Ci. Lima, 9 (1946), 113117.Google Scholar
7.Sierpiński, W.. On the congruence of sets and their equivalence by finite decomposition (Lucknow University, 1954); reprint in Congruence of sets and other monographs (Chelsea, New York, 1967)Google Scholar
8.Tarski, A.. Cardinal Algebras (Oxford University Press, New York, 1949).Google Scholar