Published online by Cambridge University Press: 26 February 2010
A sequence {an} of integers is said to be primitive if ai × aj whenever i ≠ j. Let f be a polynomial with integer coefficients and A a sequence of positive integers. We discuss further a problem considered in [1] in which I. Anderson, W. W. Stothers and the author investigated primitive sequences of the form f(A) = {f(x), x ∈ A}. (Of course, we can assume f(x)→ ∞ as x → ∞.) We shall prove the following theorem in which A(n), as usual, denotes the number of memhers of A that are. less than or equal to n.