Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:36:21.927Z Has data issue: false hasContentIssue false

Covering and packing properties of bounded sequences of convex sets

Published online by Cambridge University Press:  26 February 2010

H. Groemer
Affiliation:
Department of Mathematics, The University of Arizona, Tucson, Arizona, U.S.A., AZ 85721.
Get access

Extract

In this paper n always denotes an arbitrary but fixed positive integer. Let S be a subset of n-dimensional euclidean space En and (Si) = (S1, S2, …) a finite or infinite sequence of subsets of En. The sequence (Si) is called a covering of S if S ⊂ ⋃Si, and a packing in S if ⋃SiS and int Si, ⋂ int Sj = Ø (for all ij). We say that (Si) permits an isometric covering of S or packing in S if there are rigid motions σi so that (σiSi) is a covering of S or a packing in S, respectively. If there are not only rigid motions but translations τi so that (τiSi) is a covering or packing, we express this by saying that (Si) permits a translative covering or packing. We consider sequences (Si) rather than sets {Si} not because the ordering is of any importance but because some of the sets Si may appear repeatedly.

Type
Research Article
Copyright
Copyright © University College London 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chakerian, G. D.. Covering space with convex bodies. In Lecture Notes in Math., vol. 490, The Geometry of Metric and Linear Spaces (Michigan, 1974) (Springer Verlag, 1975), 187193.Google Scholar
2.Chakerian, G. D. and Groemer, H.. On classes of convex sets that permit plane coverings. Israel J. Math., 19 (1974), 305311.CrossRefGoogle Scholar
3.Tóth, L. Fejes. Lagerungen in der Ebene, aufder Kugel und im Raum (Zweite Auflage) (Springer-Verlag, 1972).CrossRefGoogle Scholar
4.Groemer, H.. On a covering property of convex sets. Proc Amer. Math. Soc., 59 (1976), 346352.CrossRefGoogle Scholar
5.Groemer, H.. Some packing and covering problems. Amer. Math. Monthly, 83 (1976), 726727.CrossRefGoogle Scholar
6.Groemer, H.. On coverings of plane convex sets by translates of strips. Aequationes Math., 22 (1981), 215222.CrossRefGoogle Scholar
7.Groemer, H.. On coverings of convex sets by translates of slabs. Proc. Amer. Math. Soc, 82 (1981), 261266.Google Scholar
8.Hadwiger, H.. Volumschätzung für die einem Eikörper überdeckenden und unterdeckenden Parallelotope. Elem. Math., 10 (1955), 122124.Google Scholar
9.Hlawka, E.. Ausfüllung und Überdeckung konvexer Körper durch konvexe Körper. Monatsh. Math., 53 (1949), 81131.CrossRefGoogle Scholar
10.Kosiński, A.. A proof of an Auerbach-Banach-Mazur-Ulam theorem on convex bodies. Colloq. Math., 4 (19561957), 216218.CrossRefGoogle Scholar
11.Meir, A. and Moser, L.. On packing of squares and cubes. J. Combinatorial Theory, 5 (1968), 126134.CrossRefGoogle Scholar
12.Moon, J. W. and Moser, L.. Some packing and covering theorems. Colloq. Math., 17 (1967), 103110.CrossRefGoogle Scholar
13.Radziszewski, K.. Sur un problème extrémal relatif aux figures inscrites et circonscrites aux figures convexes. Ann. Univ. Mariae Curie-Sklodowska [A], 6 (1952), 518 (1954).Google Scholar