No CrossRef data available.
Published online by Cambridge University Press: 14 February 2018
Almost-flat manifolds were defined by Gromov as a natural generalization of flat manifolds and as such share many of their properties. Similarly to flat manifolds, it turns out that the existence of a spin structure on an almost-flat manifold is determined by the canonical orthogonal representation of its fundamental group. Utilizing this, we classify the spin structures on all four-dimensional almost-flat manifolds that are not flat. Out of 127 orientable families, we show that there are exactly 15 that are non-spin, the rest are, in fact, parallelizable.