Published online by Cambridge University Press: 26 February 2010
The Čech compactification of the set of integers is known [6] to have the remarkable property that it has no closed subsets of cardinal ℵ0 or c, every infinite closed subset of it having 2c points. The main object of the present paper is to investigate whether similar gaps in the cardinals of closed subsets can occur in metric spaces. We shall see that the situation there is rather different; if the generalized continuum hypothesis is assumed, there are no gaps, and in any case the missing cardinals, if any, must be big rather than small. The main results are obtained in §3; in particular, we completely determine the cardinals of the closed subsets of complete metric spaces, and also how many closed subsets of each cardinal there are. The methods depend on a study of the discrete subsets of metric spaces, which is carried out in §2, and which may be of independent interest. In conclusion, we briefly consider some fragmentary results for non-metric spaces, in §4. Throughout, we assume the axiom of choice but not the continuum hypothesis.