Published online by Cambridge University Press: 26 February 2010
The problem of finding an axiomatic characterisation of dimension was first tackled by Menger, who gave a set of five independent axioms characterising the dimension (in the sense of dim, ind, or Ind since they are all equal on separable metric spaces) of subsets of the plane [7, p. 156]. The question of whether Menger's axioms characterise the dimension of more general spaces is still unsettled. Recently, Nishiura “11” obtained a set of seven independent axioms characterising the dimension of separable metric spaces. By modifying one of Nishiura's axioms, Aarts [1] then obtained an axiomatic characterisation of the strong inductive dimension (Ind) of metric spaces. Also, Ščepin [12] and Lokucievskiĭ [9] have obtained different axioms for dim on the class of compact metric and compact spaces, respectively. We present here four sets of independent axioms that characterise the dimension function u-dim, which is defined on the class of all uniform spaces.