Published online by Cambridge University Press: 26 February 2010
Let J = (s1, s2, … ) be a collection of relatively prime integers, and suppose that π(n) = |J∩{1,2,…, n}| is a regularly varying function with index a satisfying 0 < α < l. We investigate the “stationary random sieve” generated by J, proving that the number of integers less than k which escape the action of the sieve has a probability mass function with approximate order k-α/2 in the limit as k → ∞. This result may be used to deduce certain asymptotic properties of the set of integers which are divisible by no s є J, in that it gives new information about the usual deterministic (that is, non-random) sieve. This work extends previous results valid when si=pi2, the square of the ith prime.