Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T22:48:49.111Z Has data issue: false hasContentIssue false

The ambiguous class group and the genius group of certain non-normal extensions

Published online by Cambridge University Press:  26 February 2010

Colin D. Walter
Affiliation:
Department of Mathematics, University College, Belfield, Dublin 4, Ireland
Get access

Extract

In an article generalising work of Roquette and Zassenhaus, Connell and Sussman [2] have demonstrated the importance of certain prime ideals in a number field k0 for estimating the l-rank of the class group of an extension k. These ideals have a power prime to l which is principal and all their prime factors in k have ramification index divisible by l. The products of the prime divisors of these ideals in the normal closure K of k/k0 are invariant under Gal (k/k0). Thus certain roots in k of the ideals in k0 are in some sense fixed by the Galois group. This leads to the concept of ambiguous ideals in an extension k/k0 which is not necessarily normal.

Type
Research Article
Copyright
Copyright © University College London 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barrucand, P. and Cohn, H.. “A rational genus, class number divisibility, and unit theory for pure cubic fields”, J. Number Theory, 2 (1970), 721; 3 (1971), 226-239.CrossRefGoogle Scholar
2.Connell, I. and Sussman, D.. “The p dimension of class groups of number fields”, J. London Math. Soc. (2), 2 (1970), 525529.CrossRefGoogle Scholar
3.Fröhlich, A.. “The genus field and genus group in finite number fields”, I and II, Mathematika, 6 (1959), 4046 and 142-146.CrossRefGoogle Scholar
4.Fröhlich, A.. “On the l-class group of the field ”, J. London Math. Soc, 37 (1962), 189192.CrossRefGoogle Scholar
5.Gerth, F.. “On l-class groups of certain number fields”, Mathematika, 23 (1976), 116123.CrossRefGoogle Scholar
6.Gold, R.. “Genera in normal extensions”, Pacific J. Math., 63 (1976), 397400.CrossRefGoogle Scholar
7.Halter-Koch, F.. “Ein Satz über die Geschlechter relativ-zyklischer Zahlkörper von Primzahlgrad und seine Andwendung auf biquadratisch-bizyklische Körper”, J. Number Theory, 4 (1972), 144156.CrossRefGoogle Scholar
8.Hasse, H.. Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. (Physicia-Verlag, Würzburg/Wien, 1970).Google Scholar
9.Holzer, L.. “Zur Klassenzahl in reinen Zahlkörpern von ungeraden Primzahlgrade”, Acta Math., 83 (1950), 327348.CrossRefGoogle Scholar
10.Parry, C. and Walter, C.. “The class number of pure fields of prime degree”, Mathematika. 23 (1976), 220226; 24 (1977), 122.CrossRefGoogle Scholar
11.Walter, C.. “Brauer's class number relation”, Acta Arith., 35 (1979), 3340.CrossRefGoogle Scholar
12.Walter, C.. “A class number relation in Frobenius extensions of number fields”, Mathematika, 24 (1977), 216225.CrossRefGoogle Scholar
13.Wegner, U.. “Zur Theorie der auflösbaren Gleichungen von Primzahlgrad”, J. f. reine u. angew. Math., 168 (1932), 176190.CrossRefGoogle Scholar
14.Yokoi, H.. “On the class number of a relatively cyclic number field”, Nagoya Math. J., 29 (1967), 3144.CrossRefGoogle Scholar