Article contents
ALMOST-PRIME $k$-TUPLES
Published online by Cambridge University Press: 06 September 2013
Abstract
Let $k\geq 2$ and $\Pi (n)= { \mathop{\prod }\nolimits}_{i= 1}^{k} ({a}_{i} n+ {b}_{i} )$ for some integers ${a}_{i} , {b}_{i} $ ($1\leq i\leq k$). Suppose that $\Pi (n)$ has no fixed prime divisors. Weighted sieves have shown for infinitely many integers $n$ that the number of prime factors $\Omega (\Pi (n))$ of $\Pi (n)$ is at most ${r}_{k} $, for some integer ${r}_{k} $ depending only on $k$. We use a new kind of weighted sieve to improve the possible values of ${r}_{k} $ when $k\geq 4$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2013
References
- 3
- Cited by