Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T11:38:25.302Z Has data issue: false hasContentIssue false

Topological games and optimization problems

Published online by Cambridge University Press:  26 February 2010

Gabriel Debs
Affiliation:
Equipe d'Analyse, Université Paris 6, 4, Place Jussieu, 75252 Paris Cedex 05, France
Jean Saint Raymond
Affiliation:
Equipe d'Analyse, Université Paris 6, 4, Place Jussieu, 75252 Paris Cedex 05, France
Get access

Extract

Let X be a completely regular space, and Cb(X) the space of all bounded continuous real valued functions on X equipped with the metric associated to the uniform norm. For f∈Cb(X) and γ∈¡ we use the following standard notations: inf(f) = infx∈Xf(x) and {f<γ} = {x∈X:f(x)<γ}

Type
Research Article
Copyright
Copyright © University College London 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Choquet, G.. Lectures on Analysis (Benjamin, New York, 1969).Google Scholar
2.Coban, M. M., Kenderov, P. S. and Revalski, J. P.. Generic well-posedness of optimization problems in topological spaces. Mathematika, 36 (1989), 301304.CrossRefGoogle Scholar
3.Debs, G.. Espaces hereditairement de Baire. Fund. Math., 129 (1988), 196206.CrossRefGoogle Scholar
4.Kenderov, P. S. and Revalski, J. P.. The Banach-Mazur game and generic existence of solutions to optimization problems. Proc. Amer. Math. Soc, 118 (1993), 911917.CrossRefGoogle Scholar
5.Raymond, J. Saint. Jeux topologiques et espaces de Namioka. Proc. Amer. Math. Soc. 87 (1983), 499504.CrossRefGoogle Scholar
6.Stegall, Ch.. Topological spaces with dense subspaces that are homeomorphic to complete metric space and the classification of C{K) Banach spaces. Mathematika, 34 (1987), 101107.CrossRefGoogle Scholar
7.Telgarski, R.. Topological games: On the 50-th anniversary of the Banach-Mazur game. Rocky Mount. J. Math., 17 (1987), 227276.Google Scholar