Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:21:24.609Z Has data issue: false hasContentIssue false

On generalized Dedekind domains

Published online by Cambridge University Press:  26 February 2010

Muhammad Zafrullah
Affiliation:
c/o Department of Mathematics, University College London, Gower Street, London. WC1E 6BT
Get access

Extract

Throughout this note the letters D and K denote a commutative integral domain with 1 and its field of fractions.

Type
Research Article
Copyright
Copyright © University College London 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Anderson, D. D. and Anderson, D. F.. Generalized GCD-domains. Comment. Math. Univ. St. Pauli, 23 (1979), 213221.Google Scholar
2Anderson, D. D., Anderson, D. F. and Johnson, E. W.. Some ideal theoretic conditions on a Noetherian ring. Houston J. Math., 7 (1981), 110.Google Scholar
3Anderson, D. D. and Matijevic, J.. Graded ω-rings. Can. J. Math., 31 (3) (1979), 449457.CrossRefGoogle Scholar
4Gilmer, R.. Multiplicative Ideal Theory (Marcel Dekker, New York, 1972).Google Scholar
5Griffin, M.. Some results on υ-multiplication rings. Can. J. Math., 19 (1967), 710722.CrossRefGoogle Scholar
6Griffin, M.. Rings of Krull type. J. Reine Angew. Math., 229, (1968), 127.Google Scholar
7Helmer, O.. Divisibility properties of integral functions. Duke Math. J., 6 (1940), 345356.CrossRefGoogle Scholar
8Henriksen, M.. On the ideal structure of the ring of entire functions. Pacific J. Math., 2 (1952), 179184.CrossRefGoogle Scholar
9Jaffard, P.. Les Systemes d”Ideaux (Dunod, Paris, 1960).Google Scholar
10Malik, S., Mott, J. and Zafrullah, M.. On t-invertibility (preprint).Google Scholar
11Querre, J.. Sur une propriete des anneaux de Krull. Bull Sc. Math. 2° serie 95 (1971), 341354.Google Scholar
12Querre, J.. Ideaux divisoriels d'un anneaux de polynomes. J. Alg., 64 (1980), 270284.CrossRefGoogle Scholar
13Ribenboim, P.. Anneaux normaux reels a caractere fini. Summa Brasil. Math., 3 (1956), 213253.Google Scholar
14Schilling, O.. The Theory of Valuations, Math. Surveys No. IV (Amer. Math. Soc., 1950).CrossRefGoogle Scholar
15Zafrullah, M.. On finite conductor domains. Manuscripta Math., 24 (1978), 191203.Google Scholar
16Zafrullah, M.. The υ-operation and intersections of quotient rings of integral domains. Comm. Algebra, 13 (8) (1985), 16991712.CrossRefGoogle Scholar
17Zafrullah, M.. On a property of pre-Schreier domains. To appear in Comm. Algebra.Google Scholar