No CrossRef data available.
Article contents
On congruence compact monoids
Part of:
Semigroups
Published online by Cambridge University Press: 26 February 2010
Abstract
A universal algebra is called congruence compact if every family of congruence classes with the finite intersection property has a non-empty intersection. This paper determines the structure of all right congruence compact monoids S for which Green's relations ℐ and ℋ coincide. The results are thus sufficiently general to describe, in particular, all congruence compact commutative monoids and all right congruence compact Clifford inverse monoids.
MSC classification
Secondary:
20M10: General structure theory
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1999
References
1.Bulman-Fleming, S.. On equationally compact semilattices. Algebra Universalis, 2 (1972), 146–151.CrossRefGoogle Scholar
2.Bulman-Fleming, S. and Normak, P.. Flatness properties of monocyclic acts. Mh. Math., 122 (1996), 307–323.CrossRefGoogle Scholar
3.Crawley, P. and Dilworth, R. P.. The Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs, N.J., 1973.Google Scholar
4.Clifford, A. H. and Preston, G. B.. The Algebraic Theory of Semigroups, Volume 1. Mathematical Surveys of the American Mathematical Society, Number 7. Providence, R.I., 1961.CrossRefGoogle Scholar
8.Grätzer, G. and Lakser, H.. Equationally compact semilattices. Colloq. Math., 20 (1969), 27–30.CrossRefGoogle Scholar
9.Grillet, P. A.. Semigroups: An Introduction to the Structure Theory. Marcel Dekker Inc., New York, 1995.Google Scholar
10.Howie, J. M.. Fundamentals of Semigroup Theory. Oxford University Press, Oxford, 1995.CrossRefGoogle Scholar
11.Hotzel, E.. Halbgruppen mit ausschliesslich reesschen Linkskongruenzen. Math. Z., 112 (1969), 300–320.CrossRefGoogle Scholar
12.Hulanicki, A.. Algebraic characterization of abelian divisible groups which admit compact topologies. Fund. Math., 44 (1957), 192–197.CrossRefGoogle Scholar
13.Huber, M. and Meier, W.. Linearly compact groups. J. Pure Appl. Algebra, 16 (1980), 167–182.CrossRefGoogle Scholar
14.Jones, P. R.. On the congruence extension property for semigroups. In Semigroups, Algebraic Theory and Applications to Formal Languages and Codes, Proceedings, Luino, 1992. World Scientific, Singapore, 1993, 133–143.Google Scholar
16.Leptin, H.. Über eine Klasse linear kompakter abelscher Gruppen I. Abh. Math. Sern. Hamb., 19 (1954), 23–40.CrossRefGoogle Scholar
18.Tang, X.. Semigroups with the congruence extension property. Semigroup Forum, 56 (1998), 226–264.CrossRefGoogle Scholar
19.Zelinsky, D.. Linearly compact modules and rings. Amer. J. Math., 75 (1953), 79–90.CrossRefGoogle Scholar