Article contents
A note on the integral points of a modular curve of level 7
Published online by Cambridge University Press: 26 February 2010
Extract
Let . denote the modular curve associated with the normalizer of a non-split Cartan group of level N., where N. is an arbitrary integer. The curve
is denned over Q and the corresponding scheme over ℤ[1/N] is smooth [1]. If N. is a prime, the genus formula for
. is given in [5,6]. The curve
. has genus 0 if N < 11 and
has genus 1. Ligozat [5] has shown that the group of Q-rational points on
has rank 1. If the genus g(N). is greater than 1, very little is known about the Q-rational points of
. Since under simple conditions imaginary quadratic fields with class number 1 give an integral point on these curves, Serre and others have asked whether all integral points are obtained in this way [8].
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1985
References
- 8
- Cited by