Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T06:55:05.547Z Has data issue: false hasContentIssue false

Multiplicative functions on arithmetic progressions, II.

Published online by Cambridge University Press:  26 February 2010

P. D. T. A. Elliott
Affiliation:
Department of Mathematics, University of ColoradoBoulderColorado 80309, U.S.A
Get access

Extract

Let g(n) be a complex-valued multiplicative function which satisfies |g(n)| 1 for all n. The aim of this paper is to establish the following theorem.

Type
Research Article
Copyright
Copyright © University College London 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Elliott, P. D. T. A.. Multiplicative functions on arithmetic progression. Mathematika, 34 (1987), 199206.CrossRefGoogle Scholar
2.Elliott, P. D. T. A.. Elliott. Arithmetic Functions and Integer Products. Grund. der math. Wiss., 272, (Springer-Verlag, New York, 1985).CrossRefGoogle Scholar
3.Elliott, P. D. T. A.. Elliott. Additive arithmetic functions on arithmetic progressions. Proc. London Math. Soc (Third Series), 54 (1987), 1537.CrossRefGoogle Scholar
4.Hildebrand, A.. An Erdős-Wintner theorem for differences of additive functions. Preprint.Google Scholar
5.Siebert, H. and Wolke, D.. Uber einige Analoga zum Bombierischen Primzahlsatz. Math. Zeit., 122 (1971), 327341.CrossRefGoogle Scholar
6.Wolke, D.. Uber das summatorische Verhalten zahlentheoretischer Funktionen. Math. Ann., 194 (1971), 147166.CrossRefGoogle Scholar
7.Wolke, D.. Uber die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen. I. Math. Ann., 202 (1973), 125.CrossRefGoogle Scholar