Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T21:14:12.244Z Has data issue: false hasContentIssue false

Hausdorff dimension and the exceptional set of projections

Published online by Cambridge University Press:  26 February 2010

K. J. Falconer
Affiliation:
The School of Mathematics, University of Bristol, University Walk, Bristol. BS8 1TW
Get access

Extract

If П is a k-dimensional vector subspace of Rn and E is a subset of Rn, let projп(E) denote the orthogonal projection of E onto П. Marstrand [8] and Kaufman [6] have developed results on the Hausdorff dimension and measure of projп(E) in terms of the dimension of E, leading to the very general theory of Mattila [11]. In particular, Mattila shows that if the Hausdorff dimension dim E of the Souslin set E is greater than k, then projп(E) has positive k-dimensional Lebesgue measure for almost all П ∈ Gn, k (in the sense of the usual normalized invariant measure on the Grassmann manifold Gn, k of k-dimensional subspaces of Rn).

Type
Research Article
Copyright
Copyright © University College London 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barros-Neto, J.. An introduction to the theory of distributions (Marcel Dekker, Inc., New York, 1973).Google Scholar
2.Besicovitch, A. S. and Rado, R.. A plane set of measure zero containing circumferences of every radius. J. London Math. Soc. (3), 43 (1968), 717719.CrossRefGoogle Scholar
3.Carleson, L.. Selected problems on exceptional sets (Van Nostrand, Princeton, 1967).Google Scholar
4.Falconer, K. J.. Continuity properties of fc-plane integrals and Besicovitch sets. Math. Proc. Cambridge Phil. Soc., 87 (1980), 221226.CrossRefGoogle Scholar
5.Falconer, K. J.. Sections of sets of zero Lebesgue measure. Mathematika, 27 (1980), 9096.CrossRefGoogle Scholar
6.Kaufman, R.. On Hausdorff dimension of projections. Mathematika, 15 (1968), 153155.CrossRefGoogle Scholar
7.Kaufman, R. and Mattila, P.. Hausdorff dimension and exceptional sets of linear transformations. Ann. Acad. Sci. Fennicae, 1 (1975), 387392.CrossRefGoogle Scholar
8.Marstrand, J. M.. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3), 4 (1954), 257302.CrossRefGoogle Scholar
9.Marstrand, J. M.. The dimension of Cartesian product sets. Proc. Cambridge Phil. Soc., 50 (1954), 198202.CrossRefGoogle Scholar
10.Marstrand, J. M.. Packing planes in R3. Mathematika, 26 (1979), 180183.CrossRefGoogle Scholar
11.Mattila, P.. Hausdorff dimension, orthogonal projections and intersections with planes. Ann. Acad. Sci. Fennicae, 1 (1975), 227244.CrossRefGoogle Scholar