Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T17:42:00.391Z Has data issue: false hasContentIssue false

Functional iterations and stopping times for Brownian motion on the Sierpiński gasket

Published online by Cambridge University Press:  26 February 2010

Peter J. Grabner
Affiliation:
Institut für Mathematik A, Technische Universitiit Graz, Steyrergasse 30, 8010 Graz, Austria, E-mail address: [email protected]
Get access

Extract

We investigate the distribution of the hitting time T defined by the first visit of the Brownian motion on the Sierpiński gasket at geodesic distance r from the origin. For this purpose we perform a precise analysis of the moment generating function of the random variable T. The key result is an explicit description of the analytic behaviour of the Laplace- Stieltjes transform of the distribution function of T. This yields a series expansion for the distribution function and the asymptotics for t →0.

Type
Research Article
Copyright
Copyright © University College London 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ap.Apostol, T. M.. Introduction to Analytic Number Theory (Springer Verlag, Berlin, New York 1984).Google Scholar
B-P.Barlow, M. T. and Perkins, E. A.Brownian motion on the Sierpiński gasket Probab. Th. rel. Fields 79 (1988), 543623CrossRefGoogle Scholar
Be.Beardon, A. F.Iteration of Rational Functions (Springer Verlag, Berlin, New York 1991)CrossRefGoogle Scholar
B-B1.Biggins, J. D. and Bingham, N. H.Near-constancy phenomena in branching processes. Math. Proc. Camh. Phil. Soc 110 (1991), 545558CrossRefGoogle Scholar
B-B2.Biggins, J. D. and Bingham, N. H.Large deviations in the supercritical branching process Adv. Appl. Probab, 25 1993, 757772CrossRefGoogle Scholar
Bi.Bingham., N. H.On the limit of a supercritical branching process J. Appl. Probab. (special volume), 25A (1988), 215228.CrossRefGoogle Scholar
B-G-T.Bingham, N. H.Goldie, J. L. and Teugels, J. L. Regular variation Encycl. Math. Appl 27 (Cambridge University Press, 1987).Google Scholar
Bo.Boas, R. P.Entire Functions (Academic Press, New York, 1954)Google Scholar
D-K.Dobrushin, R. L. and Kusuoka, S.Statistical Mechanics and Fractals, Lecture Notes in Math., 1567 (Springer 1993)CrossRefGoogle Scholar
Do.Doetsch, G.Hamlbuch der Laplace-Transformation (Birkhäuser Verlag, Basel, 1955)CrossRefGoogle Scholar
Dul.Dubuc, S.. La densité de la loi-limite d'un processus en cascade expansif., Z. Wahrscheinlichkeitsth. 19 (1971), 281290CrossRefGoogle Scholar
Du2.Dubuc, S.. Etude théorique et numérique de la fonction de Karlin-McGregor., J. Analyse Math, 42 (1982), 1537.CrossRefGoogle Scholar
Du3.Dubuc, S.. An Approximation of the gamma function., J. Math. Anal. Appl., 146 (1990), 461468.CrossRefGoogle Scholar
El.Ellis, R. S.Entropy, Large Deviations and Statistical Mechanics (Springer Verlag, Berlin, New York, 1985)CrossRefGoogle Scholar
E-I.Elworthy, K. D. and Ikeda, N.Problems in Probability Theory: Stochastic Models and Diffusion on Fractals, 283 1993Google Scholar
Fa.Falconer, K. J.The Geometry of Fractal Sets (Cambridge University Press, 1985)CrossRefGoogle Scholar
F-O.Flajolet, P. and Odlyzko, A. M.. Limit distributions for coefficients of iterates of polynomials with applications to combinatorial enumeration. Math. Proc. Camb. Phil. Soc. 96 (1984), 237372CrossRefGoogle Scholar
F-S.Shima, . On a spectral analysis for the Sierpiiiski gasket. Potential Analysis. 1 (1992), 135Google Scholar
G-.J.Gouldcn, I. P. and Jackson, D. M.Combinatorial Enumeration (J. Wiley and Sons, New York, 1983)Google Scholar
Gr.Grabner, P. J.. Completely q-multiplicative functions: the Mellin transform approach. Ada Arilh. 65 (1993), 8596.Google Scholar
G-T.Grabner, P. J. and Tichy, R. F. Equidistribution and Brownian motion on the Sierpinski gasket. Mh. Math. To appearGoogle Scholar
G-W.Grabner, P. J. and Woess, W.Woess. Functional Iterations and Periodic Oscillations for the Simple Random Walk on the Sierpiiiski Graph Stochastic Processes Appl 69 (1997), 127138CrossRefGoogle Scholar
Ha.Harris, T. E.The Theory of Branching Processes (Springer Verlag, Berlin, New York, 1963)CrossRefGoogle Scholar
I-M.Itô, K.McKean, H. P.McKean. Diffusion Processes and Their Sample Paths (Springer Verlag, New York, 1965)Google Scholar
Iv.Ivić, A.The Riemann Zeta Function (J. Wiley, New York, 1985)Google Scholar
K-Ml.Karlin, S. and McGregor, J.. Embeddability of discrete time branching processes into continuous-time branching processes. Trans. Amer. Math. Soc., 132 19683, 115136CrossRefGoogle Scholar
K-M2.Karlin, S. and McGregor, J.. Embedding iterates of analytic functions with two fixed points into continuous groups. Trans. Amer. Math. Soc, 32 (1968), 137–145CrossRefGoogle Scholar
Ki.Kigami, J.. A harmonic calculus on the Sierpiiiski spaces. Japan J. Appl. Math. 6 (1989), 259290CrossRefGoogle Scholar
Le.Levin, B. Y.Distribution of Zeros of Entire Functions, Transl. Math. Monographs, vol. 5 (AMS Providence, 1964)Google Scholar
Li.Lindstrøm, T.Brownian Motion on Nested Fractals, vol. 83, Memoirs of the AMS, (Providence, 1990)CrossRefGoogle Scholar
Mc.Mellin, H.Die Dirichlet'schen Reihen, die zahlentheoretischen Funkionen und die uncndlichcn Produktc von endlichem Geschlecht Ada. Math. 28 (1903), 36Google Scholar
R-N.Riesz, F. and Nagy, B. Sz.. Functional Analysis (F. Ungar Publ. Co., New York, 1955).Google Scholar
sh.Shima, T.. On Eigenvalue problems for the random walks on the Sierpiiiski pregasket. Japan J. Indust. Appl. Math., 8 (1991), 127141.CrossRefGoogle Scholar
3.Sierpinski, W.. Sur une courbe dont tout point est un point de ramification. C. R. Acad. Sci. Paris, 160 (1915). 302305.Google Scholar
Te.Tenenbaum, G.. Introduction to Analytic and Probabilistic Number Theory (Cambridge University Press, 1995).Google Scholar
Va.Vaaler, J. D.. Some extremal functions in Fourier analysis. Bull. Amer. Math. Soc., 12 (1985), 183216.CrossRefGoogle Scholar
Wi.Widder, D. V.. An Introduction to Transform Theory (Academic Press, New York, 1971).Google Scholar
Yo.Yosida, K.. Functional Analysis (Springer Verlag, Berlin, New York, 1971).CrossRefGoogle Scholar