No CrossRef data available.
Article contents
Borel and analytic sets in Banach spaces
Published online by Cambridge University Press: 26 February 2010
Extract
We prove theorems relating descriptive set theory to nonreflexive Banach spaces. In Theorems 1, 2, and 3 X denotes a Banach space that is separable, but is not reflexive. JX denotes the cannonical embedding of X in X**.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1994
References
C.Becker, H.. Pointwise limits of sequences and ∑12 sets. Fund. Math., 128 (1987), 159–169.CrossRefGoogle Scholar
2.Casazza, P. G. and Lohman, R. H.. A general construction of the type of R. C. James. Canadian J. Math 27 (1975), 1263–1270.Google Scholar
4.Dunford, N. and Schwartz, J. T.. Linear Operators I, (Interscience, New York, 1958).Google Scholar
5.James, R. C.. A non-reflexive Banach space isometric with its second conjugate space. Proc. Nat. Acad. Sci. (USA), 37 (1951), 174–177.CrossRefGoogle ScholarPubMed
6.Jayne, J. E. and Rogers, C. A.. The extremal structure of convex sets. J. Fund. Anal., 26 (1977), 251–288.CrossRefGoogle Scholar
8.Lindenstrauss, J.. On James' paper “pseparable conjugate spaces”. Israel J. Math., 9 (1971), 279–284.CrossRefGoogle Scholar
9.Pelczyriski, A.. A note on the paper of I. Singer “Basic sequence and reflexivity of Banach spaces”. Studio Math., 21 (1962), 371–374.Google Scholar