Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T04:56:24.786Z Has data issue: false hasContentIssue false

An inequality for sequence transformations

Published online by Cambridge University Press:  26 February 2010

L. S. Bosanquet
Affiliation:
University College, London.
Get access

Extract

1.1. Let A = (aμν) be a normal triangular matrix, i.e., one for which aμμ ≠ 0 (μ ≥ 0), aμν = 0 (ν > μ).

where (i) 0≤m<n, (ii) Rμ>0 (μ≥0), (iii) K is a constant, depending on the matrix A and the sequence {Rμ}, but independent of m, n and the finite sequence {sν}.

Type
Research Article
Copyright
Copyright © University College London 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andersen, A. F., “On the extensions within the theory of Cesàro summability of a classical convergence theorem of Dedekind”, Proc. London Math. Soc. (3), 8 (1958), 152.CrossRefGoogle Scholar
2. Bosanquet, L. S., “A mean value theorem”, Journal London Math. Soc, 16 (1941), 146148.CrossRefGoogle Scholar
3. Bosanquet, L. S., “Note on convergence and summability factors (III) ”, Proc. London Math. Soc. (2), 50 (1949), 482496.Google Scholar
4. Coomes, H. R. and Cowling, V. F., “Summability and associative infinite matrices”, Michigan Math. Journal, 8 (1961), 6570.CrossRefGoogle Scholar
5. Dienes, P., “Notes on linear equations in infinite matrices”, Quarterly Journal (Oxford) (1), 3 (1932), 253268.Google Scholar
6. Hardy, G. H., Divergent series (Oxford, 1949).Google Scholar
7. Hardy, G. H. and Riesz, , The general theory of Dirichlet's series (Cambridge Tract No. 18, 1916; reprinted 1952).Google Scholar
8. Jacob, M., “Über die Verallgemeinerung einiger Theoreme von Hardy in der Theorie der Fourier' schen Reihen”, Proa. London Math. Soc. (2) 26 (1927), 470492.CrossRefGoogle Scholar
9. Jacob, M., “Über die Äquivalenz der Cesàrosehen und Hölderschen Mittel für Integrale bei gleicher reelle Ordnung k>0”, Math. Zeitschrift, 26 (1927), 672682.CrossRefGoogle Scholar
10. Jurkat, W. and Peyerimhoff, A., “Mittelvertsätze bei Matrix- und Integraltrans-formationen”, Math. Zeitschrift, 55 (1951), 92108.CrossRefGoogle Scholar
11. MacPhail, M. S., “On some recent developments in the theory of series”, Canadian J. of Math., 6 (1954), 405409.CrossRefGoogle Scholar
12. Peyerimhoff, A., “Konvergenz- und Summierbarkeitsfaktoren”, Math. Zeitschrift, 55 (1951), 2354.CrossRefGoogle Scholar
13. Riesz, M., “Une méthode de sommation équivalente à la méthode des moyennes arithmétiques”, Comptes Rendus, 152 (1911), 1651-1654.Google Scholar
14. Riesz, M., “Sur un théorfème de la moyenne et ses applications”, Acta. Litt, ac Sci. Univ. Hungaricae Szeged, 1 (1923), 114126.Google Scholar
15. Tatchell, J. B., “Limitation theorems for triangular matrix transformations”, Journal London Math. Soc, 40 (1965), 127136.CrossRefGoogle Scholar
16. Verblunsky, S., “On the limit of a function at a point”, Proc. London Math. Soc. (2) 32 (1931), 163199.CrossRefGoogle Scholar
17. Wilansky, A., “Summability: The inset. The basis in summability space”, Duke Math. J., 19 (1952), 647660.CrossRefGoogle Scholar
18. Wilansky, A., “Distinguished subsets and summability invariants”, Journal d“Analyse Math., 12 (1964), 327350.CrossRefGoogle Scholar
19. Wilansky, A. and Zeller, K., “Abschnittsbeschränkte Matrixtransformationen; starke Limitierbarkeit”, Math. Zeitschrift, 64 (1956), 258269.CrossRefGoogle Scholar
20. Zeller, K., “Abschnittskonvergenz in FK-Räumen”, Math. Zeitschrift, 55 (1951), 5570.CrossRefGoogle Scholar
21. Zeller, K., Theorie der Limitierungsverfahren (Berlin, 1958).CrossRefGoogle Scholar
22. Zeller, K., “Abschnittsabschätzungen bei Matrixtransformationen”, Math. Zeitschrift, 80 (1963), 355357.CrossRefGoogle Scholar