Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T23:03:30.186Z Has data issue: false hasContentIssue false

The 3-class groups of non-Galois cubic fields—I

Published online by Cambridge University Press:  26 February 2010

T. Callahan
Affiliation:
Department of Mathematics, University of Toronto, Toronto, Canada.
Get access

Extract

Let K3 be a non-Galois cubic extension of the rationals and let K6 be its normal closure. Under K6 there is a unique quadratic field K2. For i = 2, 3, 6 we define C1i; to be the 3-class group of K2 and ri to be the rank of Cli. We suppose that K2 is complex and that K6/K2 is unramified. Our main result is

Type
Research Article
Copyright
Copyright © University College London 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Artin, E. and Tate, J.. Class field theory (Harvard, 1961).Google Scholar
2.Barrucand, P. and Cohn, H.. “A rational genus, class number divisibility, and unit theory for pure cubic fields”, Journal of Number Theory, 2 (1970), 721.CrossRefGoogle Scholar
3.Barrucand, P. and Cohn, H.. “Remarks on Principal factors in a relative cubic field”, Journal of Number Theory, 2 (1971), 226239.CrossRefGoogle Scholar
4.Borel, A., Chowla, S., Herz, C. S., Iwasawa, K. and Serre, J-P.. Seminar on complex multiplication (Springer-Verlag, Lecture Notes in Math. 21, 1966).CrossRefGoogle Scholar
5.Craig, M.. Irregular discriminants (Thesis, Ann. Arbor, Michigan. 1971).Google Scholar
6.Dembowski, P.. Finite geometries (Springer-Verlag, 1968).CrossRefGoogle Scholar
7.Furtwängler, P. H.. “Beweis des Hauptidealsatz fur die Klassenkörper algebraischer Zahlkörper”, Hamb. Sem. Abh., 7, S.18, 1436.CrossRefGoogle Scholar
8.Gorenstien, D.. Finite groups (Harper and Row, 1968).Google Scholar
9.Hasse, H.. “Bericht Über neuere Untersuchungen und Problem aus der Theorie der algebraischen Zahlkörper”, Jahr. der D. Math. Ver., 35 (1926), 155; Ibid, 36 (1927), 255–311; Ibid, 39 (1930), 1–204.Google Scholar
10.Hasse, H.. “Arithmetische Theorie der kubischen Zahlkörper auf Klassenkörpertheoretischer Grundlage”. Math. Zeit., 31 (1930), 565582.CrossRefGoogle Scholar
11.Honda, T.. “Pure cubic fields whose class numbers are multiples of three”, Journal of Number Theory 3 (1971), 712.CrossRefGoogle Scholar
12.Reichardt, H.. “Arithmetische Theorie der kubischen Korper als Radikalkorper”, Monatshefte Math. Phys., 40 (1933), 323350.CrossRefGoogle Scholar
13.Scholz, A.. “Idealklassen und Einheiten in kubischen Körpern”, Monatshefte Math. Phys., 40 (1933), 211222.CrossRefGoogle Scholar
14.Scholz, A. and Taussky, O.. “Die Hauptideale der kubischen Klassenkorper imaginarquadratischer Zahlkörper”, J. Reine Angew, Math., 171 (1934), 1941.Google Scholar
15.Shanks, D.. “New types of quadratic fields having three invariants divisible by 3”, Journal of Number Theory, 4 (1972), 537556.CrossRefGoogle Scholar
16.Shanks, D. and Serafin, R.. “Quadratic fields with four invariants divisible by 3”.Google Scholar
17.Yokoi, H.. “On the class number of a relatively cyclic number field”, J. Math. Soc. Japan, 20 (1968), 411418.CrossRefGoogle Scholar