This paper surveys several different variants of order sorted algebra (abbreviated OSA), comparing some of the main approaches (overloaded OSA, universe OSA, unified algebra, term declaration algebra, etc.), emphasising motivation and intuitions, and pointing out features that distinguish the original ‘overloaded’ OSA approach from some later developments. These features include sort constraints and retracts; the latter is particularly useful for handling multiple data representations (including automatic coercions among them). Many examples are given, for most of which, runs are shown on the OBJ3 system.
This paper also significantly generalises overloaded OSA by dropping the regularity and monotonicity assumptions, and by adding signatures of non-monotonicities, which support simple semantics for some aspects of object oriented programming. A number of new results for this generalisation are proved, including initiality, variety, and quasi-variety theorems. Axiomatisability results à la Birkhoff are also proved for unified algebras.