Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T08:13:54.619Z Has data issue: false hasContentIssue false

Towards an algorithmic construction of cut-elimination procedures

Published online by Cambridge University Press:  01 February 2008

AGATA CIABATTONI
Affiliation:
Institut für Diskrete Mathematik und Geometrie, TU Wien, Austria
ALEXANDER LEITSCH
Affiliation:
Institut für Computersprachen, TU Wien, Austria

Abstract

We investigate cut elimination in propositional substructural logics. The problem is to decide whether a given calculus admits (reductive) cut elimination. We show that for commutative single-conclusion sequent calculi containing generalised knotted structural rules and arbitrary logical rules the problem can be decided by resolution-based methods. A general cut-elimination proof for these calculi is also provided.

Type
Paper
Copyright
Copyright © Cambridge University Press2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avron, A. and Lev, I. (2005) Non-deterministic Multiple-valued Structures. J. of Logic and Computation 15 (3)241261.Google Scholar
Baaz, M., Ciabattoni, A. and Montagna, F. (2004) Analytic Calculi for Monoidal T-norm Based Logic. Fundamenta Informaticae 59 (4)315332.Google Scholar
Baaz, M. and Leitsch, A. (2000) Cut-elimination and Redundancy-elimination by Resolution. J. Symb. Comput. 29 (2)149177.Google Scholar
Basin, D. and Ganzinger, H. (2001) Automated Complexity Analysis Based on Ordered Resolution. Journal of the ACM 48 (1)70109.Google Scholar
Buss, S. (1998) An Introduction to Proof Theory. Handbook of Proof Theory, Elsevier Science 178.Google Scholar
Ciabattoni, A. and Terui, K. (2006) Towards a semantic characterization of cut-elimination. Studia Logica 82 (1)95119.Google Scholar
Galatos, N. and Ono, H. (2006) Algebraization, parametrized local deduction theorem and interpolation for substructural logics over FL. Studia Logica 83 279308.CrossRefGoogle Scholar
Gentzen, G. (1935) Untersuchungen über das Logische Schliessen. Math. Zeitschrift 39 176210, 405431.Google Scholar
Hori, R.Ono, H. and Schellinx, H. (1994) Extending intuitionistic linear logic with knotted structural rules. Notre Dame Journal of Formal Logic 35 (2)219242.Google Scholar
Leitsch, A. (1997) The Resolution Calculus, Springer-Verlag.CrossRefGoogle Scholar
Miller, D. and Pimentel, E. (2002) Using Linear Logic to reason about sequent systems. Proceedings of Tableaux'02. Springer-Verlag Lecture Notes in Artificial Intelligence 2381 223.Google Scholar
Miller, D. and Pimentel, E. (2005) On the specification of sequent system. Proceedings of LPAR'05. Springer-Verlag Lecture Notes in Computer Science 3835 352366.Google Scholar
Prijatelj, A. (1996) Bounded Contraction and Gentzen style Formulation of Łukasiewicz Logics. Studia Logica 57 437456.Google Scholar
Restall, G. (1999) An Introduction to Substructural Logics, Routledge.Google Scholar
Schmidt-Schauss, M. (1988) Implication of clauses is undecidable. Theoretical Computer Science 268 287296.Google Scholar
Schütte, K. (1960) Beweistheorie, Springer Verlag.Google Scholar
Tait, W. W. (1968) Normal derivability in classical logic. In: The Syntax and Semantics of infinitary Languages. Springer-Verlag Lecture Notes in Mathematics 72 204236.Google Scholar
van Benthem, J. (1991) Language in Action: Categories, Lambdas and Dynamic Logic, Studies in Logic 130, North-Holland.Google Scholar