Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T17:20:21.517Z Has data issue: false hasContentIssue false

(Tissue) P systems with cell polarity

Published online by Cambridge University Press:  04 December 2009

DANIELA BESOZZI
Affiliation:
Università degli Studi di Milano, Dipartimento di Informatica e Comunicazione, Via Comelico 39, 20135 Milano, Italy Email: [email protected]
PAOLO CAZZANIGA
Affiliation:
Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Viale Sarca 336, 20126 Milano, Italy Email: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
CLAUDIO FERRETTI
Affiliation:
Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Viale Sarca 336, 20126 Milano, Italy Email: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
ALBERTO LEPORATI
Affiliation:
Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Viale Sarca 336, 20126 Milano, Italy Email: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
GIANCARLO MAURI
Affiliation:
Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Viale Sarca 336, 20126 Milano, Italy Email: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
DARIO PESCINI
Affiliation:
Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Viale Sarca 336, 20126 Milano, Italy Email: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
CLAUDIO ZANDRON
Affiliation:
Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Viale Sarca 336, 20126 Milano, Italy Email: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]

Abstract

We consider the structure of the intestinal epithelial tissue and of cell–cell junctions as the biological model inspiring a new class of P systems. First we define the concept of cell polarity, a formal property derived from epithelial cells, which present morphologically and functionally distinct regions of the plasma membrane. Then we show two preliminary results for this new model of computation: on the theoretical side, we show that P systems with cell polarity are computationally (Turing) complete; on the modelling side, we show that the transepithelial movement of glucose from the intestinal lumen into the blood can be described by such a formal system. Finally, we define tissue P systems with cell polarity, where each cell has fixed connections to the neighbouring cells and to the environment, according to both the cell polarity and specific cell–cell junctions.

Type
Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002) Molecular Biology of the Cell, 4th edition, Garland Science, New York.Google Scholar
Alhazov, A., Freund, R. and Oswald, M. (2006) Cell/symbol complexity of tissue P systems with symport/antiport rules. Int. Journal of Foundations of Computer Science 17 (1)326.CrossRefGoogle Scholar
Alhazov, A., Rogozhin, Y. and Verlan, S. (2005) Symport/antiport tissue P systems with minimal cooperation. In: Proc. of the ESF Exploratory Workshop on Cellular Computing (Complexity Aspects), Sevilla, Spain3752.Google Scholar
Bernardini, F. and Gheorghe, M. (2005) Cell communication in tissue P systems: universality results. Soft Computing 9 (9)640649.CrossRefGoogle Scholar
Besozzi, D. and Ciobanu, G. (2005) A P system description of the sodium-potassium pump. In: Mauri, G., Păun, Gh., Pérez-Jiménez, M. J., Rozenberg, G. and Salomaa, A. (eds.) Proc. of 5th Membrane Computing International Workshop (WMC04). Springer-Verlag Lecture Notes in Computer Science 3365 210223.CrossRefGoogle Scholar
Besozzi, D. and Rozenberg, G. (2006) Formalizing spherical membrane structures and membrane proteins populations. In: Hoogeboom, H. J., Păun, Gh., Rozenberg, G. and Salomaa, A. (eds.) Membrane Computing, 7th International Workshop, WMC 2006, Leiden. Springer-Verlag Lecture Notes in Computer Science 4361 1841.CrossRefGoogle Scholar
Cavaliere, M. (2003) Evolution–communication P systems. In: Păun, Gh., Rozenberg, G., Salomaa, A. and Zandron, C. (eds.) Membrane Computing. International Workshop, WMC–CdeA 02. Springer-Verlag Lecture Notes in Computer Science 2597 134145.CrossRefGoogle Scholar
Freund, R. and Oswald, M. (2003) P systems with activated/prohibited membrane channels. In: Păun, Gh., Rozenberg, G., Salomaa, A. and Zandron, C. (eds.) Membrane Computing. International Workshop, WMC–CdeA 02. Springer-Verlag Lecture Notes in Computer Science 2597 261269.CrossRefGoogle Scholar
Freund, R., Păun, Gh. and Pérez-Jiménez, M. J. (2005) Tissue-like P systems with channel states. Theoretical Computer Science 330 (1)101116.CrossRefGoogle Scholar
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. and Darnell, J. E. (2000) Molecular Cell Biology, 4th Edition, W. H. Freeman and Co.Google Scholar
Martín-Vide, C., Păun, Gh., Pazos, J. and Rodríguez-Patón, A. (2003) Tissue P systems. Theoretical Computer Science 296 295326.CrossRefGoogle Scholar
Martín-Vide, C., Pazos, J., Păun, Gh. and Rodríguez-Patón, A. (2002) A new class of symbolic abstract neural nets: tissue P systems. In: Proc. of COCOON 2002, Singapore. Springer-Verlag Lecture Notes in Computer Science 2387 290299.CrossRefGoogle Scholar
Minsky, M. L. (1967) Computation: Finite and Infinite Machines, Prentice-Hall.Google Scholar
Nelson, D. L. and Cox, M. M. (2004) Lehninger Principles of Biochemistry, 4th Edition, W. H. Freeman and Co.Google Scholar
Oswald, M. (2007) Independent agents in a globalized world modelled by tissue P systems. Artificial Life and Robotics 11 (2)171174.CrossRefGoogle Scholar
Păun, A. and Păun, Gh. (2002) The power of communication: P systems with symport/antiport. New Generation Computing 20 295305.CrossRefGoogle Scholar
Păun, A., Păun, Gh. and Rozenberg, G. (2002) Computing by communication in networks of membranes. Int. Journal of Foundations of Computer Science 13 779798.CrossRefGoogle Scholar
Păun, Gh. (1998) Computing with membranes. Journal of Computer and System Sciences 61 (1)108143. (See also Turku Centre for Computer Science – TUCS Report No. 208, 1998. Available at: http://www.tucs.fi/Publications/techreports/TR208.php.)CrossRefGoogle Scholar
Păun, Gh. (1999) Computing with membranes. An introduction. Bulletin of the EATCS 67 139152.Google Scholar
Păun, Gh. (2002) Membrane Computing: An Introduction, Springer-Verlag.CrossRefGoogle Scholar
Păun, Gh. and Rozenberg, G. (2002) A guide to Membrane Computing. Theoretical Computer Science 287 (1)73100.CrossRefGoogle Scholar
Păun, Gh., Sakakibara, Y. and Yokomori, T. (2002) P systems on graphs of restricted forms. Publicationes Mathematicae Debrecen 60 635660.Google Scholar
Rogozhin, Y., Alhazov, A. and Freund, R. (2006) Computational power of symport/antiport: history, advances and open problems. In: Freund, R., Păun, Gh., Rozenberg, G. and Salomaa, A. (eds.) Membrane Computing, 6th International Workshop, WMC 2005. Springer-Verlag Lecture Notes in Computer Science 3850 131.Google Scholar
Ross, M. R. and Pawlina, W. (2006) Histology: A Text and Atlas with Correlated Cell and Molecular Biology, 5th edition, Lippincott Williams and Wilkins.Google Scholar
Shepherdson, J. C. and Sturgis, J. E. (1963) Computability of recursive functions. Journal of the ACM 10 217255.CrossRefGoogle Scholar
Verlan, S., Bernardini, F., Gheorghe, M. and Margenstern, M. (2006) Computational completeness of tissue P systems with conditional uniport. In: Hoogeboom, H. J., Păun, Gh., Rozenberg, G. and Salomaa, A. (eds.) Membrane Computing, 7th International Workshop, WMC 2006, Leiden. Springer-Verlag Lecture Notes in Computer Science 4361 521535.CrossRefGoogle Scholar