Hostname: page-component-599cfd5f84-5kswg Total loading time: 0 Render date: 2025-01-07T06:49:21.813Z Has data issue: false hasContentIssue false

Semantical observations on the embedding of Intuitionistic Logic into Intuitionistic Linear Logic

Published online by Cambridge University Press:  04 March 2009

Sara Negri
Affiliation:
Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7 - 35131 Padova, Italy e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appendix. References

Avron, A. (1988) The semantics and proof theory of linear logic. Theoretical Computer Science 57 161184.CrossRefGoogle Scholar
Barr, M. (1991) *-Autonomous categories and linear logic. Mathematical Structures in Computer Science 1 159178.CrossRefGoogle Scholar
Battilotti, G. and Sambin, G. (to appear) Pretopologies and a uniform presentation of sup-lattices, quantales and frames.Google Scholar
Danos, V., Joinet, J.-B. and Schellinx, H. (1993) On the linear decoration of intuitionistic derivations, Équipe de Logique Mathématique prepublications, Université Paris VII 41.Google Scholar
Girard, J. Y. (1987) Linear Logic, Theoretical Computer Science 50 1101.CrossRefGoogle Scholar
Hoofman, R. (1992) Non Stable Models of Linear Logic, Ph.D. Thesis, University of Utrecht.Google Scholar
Lafont, Y. (1988) Introduction to Linear Logic, Lecture notes for the Summer School on Constructive Logic and Category Theory, Isle of Thorns.Google Scholar
Mac Lane, S. (1971) Categories for the Working Mathematician, Graduate Texts in Mathematics, Springer Verlag.CrossRefGoogle Scholar
Mac Lane, S. and Moerdijk, I. (1992) Sheaves in Geometry and Logic, a first introduction to Topos Theory, Universitext, Springer Verlag.Google Scholar
Martí-Oliet, N. and Meseguer, J. (1989) An algebraic axiomatization of linear logic models, Report SRI-CSL-89–11, Menlo Park, California.Google Scholar
Martí-Oliet, N. and Meseguer, J. (1990) Duality in closed and linear categories, Report SRI-CSL-90- 01, Menlo Park, California.Google Scholar
Martí-Oliet, N. and Meseguer, J. (1991) From Petri nets to linear logic. Mathematical Structures in Computer Science 1 69101.CrossRefGoogle Scholar
Paiva, V. C. V. de (1989) A Dialectica-like Model of Linear Logic. Springer-Verlag Lecture Notes in Computer Science 389, 341356.CrossRefGoogle Scholar
Rosenthal, K. (1990) Quantales and their applications, Longman Scientific and Technical, Longman.Google Scholar
Sambin, G. (1989) Intuitionistic formal spaces and their neighbourhood, In: Ferro, , Bonotto, , Valentini, , Zanardo, (ed.) Logic Colloquium 1988, North-Holland Amsterdam261285.Google Scholar
Sambin, G. (to appear) Pretopologies and completeness proofs, The Journal of Symbolic Logic.Google Scholar
Sambin, G. (in print)The semantics of pretopologies. In: Dosen, K. and Schroeder-Heister, P. (eds.) Substructural logics, Oxford University Press.Google Scholar
Schellinx, H. (1991) Some syntactical observations on linear logic. Journal of Logic and Computation 4, 537559.CrossRefGoogle Scholar
Seely, R. A. G. (1989) Linear logic, *-autonomous categories and cofree algebras. Contemporary mathematics 92, 371382.CrossRefGoogle Scholar
Troelstra, A. S. (1992) Lectures on Linear Logic. CSLI Lecture Notes 29.Google Scholar
Yetter, D. N. (1990) Quantales and (noncommutative) linear logic, The Journal of Symbolic Logic 55 4164.CrossRefGoogle Scholar