Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T19:41:36.549Z Has data issue: false hasContentIssue false

Primitive recursion in the abstract

Published online by Cambridge University Press:  21 January 2020

Daniel Leivant*
Affiliation:
SICE, Indiana University IRIF, Université Paris-Diderot
Jean-Yves Marion
Affiliation:
LORIA, Université de Lorraine and CNRS
*
*Corresponding author. Email: [email protected]

Abstract

Recurrence can be used as a function definition schema for any nontrivial free algebra, yielding the same computational complexity in all cases. We show that primitive-recursive computing is in fact independent of free algebras altogether, and can be characterized by a generic programming principle, namely the control of iteration by the depletion of finite components of the underlying structure.

Type
Paper
Copyright
© Cambridge University Press 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andary, P., Patrou, B. and Valarcher, P. (2005). About implementation of primitive recursive algorithms. In: Beauquier, D., Börger, E. and Slissenko, A. (eds.) Proceedings of the 12th International Workshop on Abstract State Machines, 7790.Google Scholar
Andary, P., Patrou, B. and Valarcher, P. (2011). A representation theorem for primitive recursive algorithms. Fundamenta Informaticae 107 (4) 313330.CrossRefGoogle Scholar
Blum, L., Shub, M. and Smale, S. (1989). On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21 146.CrossRefGoogle Scholar
Börger, E. (2002). The origins and the development of the ASM method for high level system design and analysis. Journal of UCS 8 (1) 274.Google Scholar
Bournez, O., Cucker, F., de Naurois, P. J. and Marion, J.-Y. (2003). Computability over an arbitrary structure. Sequential and parallel polynomial time. In: Foundations of Software Science and Computational Structures, 185199.Google Scholar
Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall.Google Scholar
Ebbinghaus, H.-D. and Flum, J. (1995). Finite Model Theory. Springer-Verlag.Google Scholar
Grädel, E. and Gurevich, Y. (1995). Metafinite model theory. In: Leivant, D. (ed.) Logic and Computational Complexity, Lecture Notes in Computer Science, vol. 960, Springer, 313366.CrossRefGoogle Scholar
Gries, D. (1981). The Science of Programming, Texts and Monographs in Computer Science. Springer.Google Scholar
Gurevich, Y. (1988). Logic in computer science column. Bulletin of the EATCS 35 7181.Google Scholar
Gurevich, Y. (1993). Evolving algebras: An attempt to discover semantics. In: Rozenberg, G. and Salomaa, A. (eds.) Current Trends in Theoretical Computer Science, vol. 40, World Scientific, 266292.CrossRefGoogle Scholar
Gurevich, Y. (2001). The sequential ASM thesis. In: Current Trends in Theoretical Computer Science, World Scientific, 363392.Google Scholar
Hartmanis, J. (1972). On non-determinancy in simple computing devices. Acta Informatica 1 336344.CrossRefGoogle Scholar
van Heijenoort, J. (1967). From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931. Harvard University Press.Google Scholar
Kleene, S. C. (1969). Formalized Recursive Functionals and Formalized Realizability. Memoirs of the AMS. American Mathematical Society.CrossRefGoogle Scholar
Leivant, D. (2018). A theory of finite structures. CoRR, abs/1808.04949.Google Scholar
Peter, R. (1951). Rekursive Funktionen. Akadémia Kiadó.Google Scholar
Sazonov, V. Y. (1980). Polynomial computability and recursivity in finite domains. Elektronische Informationsverarbeitung und Kybernetik 16 (7) 319323.Google Scholar
Skolem, T. (1923). Einige bemerkungen zur axiomatischen begründung der mengenlehre. In Matematikerkongressen in Helsingfors Den femte skandinaviske matematikerkongressen, 1922 Heijenoort (1967), 217232. English translation in (Heijenoort, 1967).Google Scholar
Strahm, T. and Zucker, J. I. (2008). Primitive recursive selection functions for existential assertions over abstract algebras. Journal of Logical and Algebraic Methods 76 (2) 175197.Google Scholar
Winskel, G. (1993). The Formal Semantics of Programming Languages: An Introduction. MIT Press.CrossRefGoogle Scholar