Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T08:56:59.588Z Has data issue: false hasContentIssue false

Observing the superposition of a single particle with the vacuum

Published online by Cambridge University Press:  08 November 2010

LUIS MANUEL RICO GUTIERREZ
Affiliation:
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom Email: [email protected], [email protected], [email protected]
VEIKO PALGE
Affiliation:
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom Email: [email protected], [email protected], [email protected]
JACOB DUNNINGHAM
Affiliation:
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom Email: [email protected], [email protected], [email protected]

Abstract

A defining feature of quantum mechanics is that it allows systems to exist in a superposition of different eigenstates of certain observables such as position or spin. However, superpositions of other quantities such as mass or charge are not seen in nature. It is thought that this disparity is partly due to the fact that it is much easier to carry out interference experiments for certain observables than others. Here we present an interferometry scheme that should allow us to observe interference between the vacuum and a single photon or atom. We begin by presenting a scheme for a Hadamard gate that operates in the Fock state basis and then show how, by creating an interferometer from two such gates, interference between a single particle and the vacuum could indeed be observed. This would provide evidence of a superposition of different particle numbers.

Type
Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonov, Y. and Susskind, L. (1967) Charge superselection rule. Phys. Rev. 155 14281431.CrossRefGoogle Scholar
Bartlett, S. D., Doherty, A. C., Spekkens, R. W. and Wiseman, H. M. (2006) Entanglement under restricted operations: Analogy to mixed-state entanglement. Phys. Rev. A 73 022311.CrossRefGoogle Scholar
Björk, G., Jonsson, P. and Sánchez-Soto, L. L. (2001) Single-particle nonlocality and entanglement with the vacuum. Phys. Rev. A 64 042106.CrossRefGoogle Scholar
Carnal, O. and Mlynek, J. (1991) Youngs double-slit experiment with atoms – a simple atom interferometer. Phys. Rev. Lett. 66 26892692.CrossRefGoogle ScholarPubMed
Dowling, M. R., Bartlett, S. D., Rudolph, T. and Spekkens, R. W. (2006) Observing a coherent superposition of an atom and a molecule. Phys. Rev. A 74 052113.CrossRefGoogle Scholar
Dunningham, J. A., Palge, V. and Vedral, V. (2009) Entanglement and nonlocality of a single relativistic particle. Phys. Rev. A 80 044302.CrossRefGoogle Scholar
Dunningham, J. A. and Vedral, V. (2007) Nonlocality of a single particle. Phys. Rev. Lett. 99 180404.CrossRefGoogle ScholarPubMed
Hardy, L. (1994) Nonlocality of a single-photon revisited. Phys. Rev. Lett. 73 22792283.CrossRefGoogle ScholarPubMed
Horodecki, M., Horodecki, P. and Horodecki, R. (1996) Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 223 18.CrossRefGoogle Scholar
Keith, D., Ekstrom, C., Turchette, Q. and Pritchard, D. (1991) An interferometer for atoms. Phys. Rev. Lett. 66 26932696.CrossRefGoogle ScholarPubMed
Kitaev, A., Mayers, D. and Preskill, J. (2004) Superselection rules and quantum protocols. Phys. Rev. A 69 052326.CrossRefGoogle Scholar
Kok, P. (2007) Lecture notes on optical quantum computing. arXiv:quant-ph/0705.4193.Google Scholar
Mirman, R. (1969) Coherent superposition of charge states. Phys. Rev. 186 13801383.CrossRefGoogle Scholar
Paterek, T., Kurzyński, P., Oi, D. and Kaszlikowski, D. (2010) Violation of Bell's inequality in the presence of superselection rules. arXiv:quant-ph/1004.5184.Google Scholar
Pegg, D. T., Phillips, L. S. and Barnett, S. M. (1998) Optical state truncation by projection synthesis. Phys. Rev. Lett. 81 16041606.CrossRefGoogle Scholar
Riehle, F., Kisters, T., Witte, A., Helmcke, J. and Borde, C. (1991) Optical Ramsey spectroscopy in a rotating frame – Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67 177180.CrossRefGoogle Scholar
Santos, E. (1992) Does quantum mechanics violate the Bell inequalities – reply. Phys. Rev. Lett. 68 894894.CrossRefGoogle Scholar
Tan, S. M., Walls, D. F. and Collett, M. J. (1991) Nonlocality of a single photon. Phys. Rev. Lett. 66 252255.CrossRefGoogle ScholarPubMed
Tan, S. M., Walls, D. F. and Collett, M. J. (1992) Nonlocality of a single photon – reply. Phys. Rev. Lett. 68 895895.CrossRefGoogle Scholar
Terra Cunha, M. O., Dunningham, J. A. and Vedral, V. (2007) Entanglement in single-particle systems. Proc. Roy. Soc. A 463 22772286.CrossRefGoogle Scholar
Wick, G. C., Wightman, A. S. and Wigner, E. P. (1952) The intrinsic parity of elementary particles. Phys. Rev. 88 101105.CrossRefGoogle Scholar