Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T13:11:46.468Z Has data issue: false hasContentIssue false

Multi-focused cut elimination

Published online by Cambridge University Press:  02 March 2017

TAUS BROCK-NANNESTAD
Affiliation:
INRIA Saclay, École Polytechnique, Route de Saclay, 91128 Palaiseau, France Email: [email protected]
NICOLAS GUENOT
Affiliation:
IT Universitetet i København, Rued Langgaards Vej 7, 2300 København, Denmark Email: [email protected]

Abstract

We investigate cut elimination in multi-focused sequent calculi and the impact on the cut elimination proof of design choices in such calculi. The particular design we advocate is illustrated by a multi-focused calculus for full linear logic using an explicitly polarised syntax and incremental focus handling, for which we provide a syntactic cut elimination procedure. We discuss the effect of cut elimination on the structure of proofs, leading to a conceptually simple proof exploiting the strong structure of multi-focused proofs.

Type
Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreoli, J.-M. (1992). Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2 (3) 297347.Google Scholar
Baelde, D. (2012). Least and greatest fixed points in linear logic. ACM Transactions on Computational Logic 13 (1) 2.CrossRefGoogle Scholar
Brock-Nannestad, T. and Guenot, N. (2015a). Cut elimination in multifocused linear logic. In: Proceedings 3rd International Workshop on Linearity, LINEARITY 2014, Vienna, Austria, 13th July, 2014, 24–33.Google Scholar
Brock-Nannestad, T. and Guenot, N. (2015b). Focused linear logic and the λ-calculus. In: Ghica, D. (ed.) Mathematical Foundations of Programming Semantics, ENTCS, 314–329. Available at http://www.sciencedirect.com/science/journal/15710661/319.CrossRefGoogle Scholar
Brock-Nannestad, T., Guenot, N. and Gustafsson, D. (2015). Computation in focused intuitionistic logic. In: Falaschi, M. and Albert, E. (eds.) Principles and Practice of Declarative Programming, 43–54. Available at http://dl.acm.org/citation.cfm?id=2790449.Google Scholar
Brock-Nannestad, T. and Schürmann, C. (2010). Focused natural deduction. In: Fermüller, C. and Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence and Reasoning, Lecture Notes in Computer Science, vol. 6397, 157–171. Available at http://www.springer.com/us/book/9783642162411.Google Scholar
Chaudhuri, K. (2008). Focusing strategies in the sequent calculus of synthetic connectives. In: Cervesato, I., Veith, H. and Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence and Reasoning, Lecture Notes in Computer Science, vol. 5330, 467481. Available at http://link.springer.com/book/10.1007%2F978-3-540-89439-1.CrossRefGoogle Scholar
Chaudhuri, K., Guenot, N. and Straßburger, L. (2011). The focused calculus of structures. In: Bezem, M. (ed.) Computer Science Logic, LIPIcs, vol. 12, 159173. Available at http://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=11007.Google Scholar
Chaudhuri, K., Miller, D. and Saurin, A. (2008a). Canonical sequent proofs via multi-focusing. In: Ausiello, G., Karhumäki, J., Mauri, G. and Ong, L. (eds.) International Conference on Theoretical Computer Science, IFIP, vol. 273, 383396. Available at http://www.springer.com/us/book/9780387096797.Google Scholar
Chaudhuri, K., Pfenning, F. and Price, G. (2008v). A logical characterization of forward and backward chaining in the inverse method. Journal of Automated Reasoning 40 (2–3) 133177.Google Scholar
Gentzen, G. (1934). Untersuchungen über das logische Schließen, I. Mathematische Zeitschrift 39 176210. Available at http://link.springer.com/article/10.1007%2FBF01201353.CrossRefGoogle Scholar
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50 1102. Available at http://www.sciencedirect.com/science/article/pii/0304397587900454.Google Scholar
Girard, J.-Y. (1996). Proof-nets: The parallel syntax for proof-theory. In: Ursini, A. and Agliano, P. (eds.) Logic and Algebra. M. Dekker, New York. Available at https://www.amazon.com/Logic-Algebra-Lecture-Applied-Mathematics/dp/0824796063.Google Scholar
Guerrini, S., Martini, S. and Masini, A. (2001). Proof nets, garbage, and computations. Theoretical Computer Science 253 (2) 185237.CrossRefGoogle Scholar
Laurent, O. (2002). Etude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II.Google Scholar
Laurent, O. (2003). Polarized proof-nets and λμ-calculus. Theoretical Computer Science 290 (1) 161188.CrossRefGoogle Scholar
Liang, C. and Miller, D. (2009). Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical Computer Science 410 (46) 47474768.Google Scholar
Miller, D. and Saurin, A. (2007). From proofs to focused proofs: A modular proof of focalization in linear logic. In: Duparc, J. and Henzinger, T. A. (eds.) Computer Science Logic, Lecture Notes in Computer Science, vol. 4646, 405419. Available at http://link.springer.com/chapter/10.1007%2F978-3-540-74915-8_31.Google Scholar
Miller, D. and Nigam, V. (2010). A framework for proof systems. Journal of Automated Reasoning 45 (2) 157188.Google Scholar
Saurin, A. (2008). Une étude logique du contrôle. Thèse de doctorat, École Polytechnique.Google Scholar
Simmons, R. (2014). Structural focalization. Transactions on Compututational Logic 15 (3) 21.Google Scholar