Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T20:07:04.866Z Has data issue: false hasContentIssue false

The mix rule

Published online by Cambridge University Press:  04 March 2009

Arnaud Fleury
Affiliation:
Equipe de Logique, UFR de Mathématiques, Université Denis Diderot (Paris 7), 2 place Jussieu, 75251 PARIS cedex [email protected]
Christian Retoré
Affiliation:
Equipe de Logique, UFR de Mathématiques, Université Denis Diderot (Paris 7), 2 place Jussieu, 75251 PARIS cedex [email protected]

Abstract

We have found both a proofnet criterion and a sequent calculus for the multiplicative fragment with units ( ⊗1,℘,0, atoms), but without the ┴-boxes of Girard (1987), which differentiate between 1 and ┴. We have also proved that for any of our proofnets there is a corresponding sequential proof.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S. (1993) Computational Interpretations of Linear Logic. Theoretical Computer Science 111.CrossRefGoogle Scholar
Danos, V. (1990) La Logique Linéaire appliquée à l’étude de divers Processus de Normalisation et principalement du λ-calcul, PhD thesis, Université Paris 7, Mathématiques.Google Scholar
Danos, V. and Regnier, L. (1990) The Structure of Multiplicatives. Archive for Mathematical Logic 28.Google Scholar
Girard, J.-Y. (1987) Linear Logic. Theoretical Computer Science 50.CrossRefGoogle Scholar
Lincoln, P and Winkler, T. (1992) Constant-Only Multiplicative Linear Logic is NP-complete. Theoretical Computer Science (to appear).Google Scholar
Retoré, C (1993a) Graph theory from linear logic: Aggregates, Preprint 47, Equipe de Logique, Université Paris 7.Google Scholar
Retoré, C(1993b) Réseaux et Séquents Ordonnés, PhD thesis, Université Paris 7, Mathématiques.Google Scholar
Retoré, C (1993c) Pomset Logic: a truly concurrent linear calculus, Rapport INRIA, March 1994.Google Scholar
Troelstra, A. S. (1992) Lectures on Linear Logic, volume 29 of CLSI Lecture Notes, Stanford University Press.Google Scholar