Article contents
Extensional constructive real analysis via locators
Published online by Cambridge University Press: 02 September 2020
Abstract
Real numbers do not admit an extensional procedure for observing discrete information, such as the first digit of its decimal expansion, because every extensional, computable map from the reals to the integers is constant, as is well known. We overcome this by considering real numbers equipped with additional structure, which we call a locator. With this structure, it is possible, for instance, to construct a signed-digit representation or a Cauchy sequence, and conversely, these intensional representations give rise to a locator. Although the constructions are reminiscent of computable analysis, instead of working with a notion of computability, we simply work constructively to extract observable information, and instead of working with representations, we consider a certain locatedness structure on real numbers.
Keywords
- Type
- Paper
- Information
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press
References
- 1
- Cited by