Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-21T21:49:53.521Z Has data issue: false hasContentIssue false

Engeler's scientific work

Published online by Cambridge University Press:  04 March 2009

E. Specker
Affiliation:
Zurich

Abstract

Erwin Engeler was born in Schaffhausen on 13 February 1930 a citizen of Wagenhausen (Thurgovia). He attended school in Diessenhofen (TG) and Schaffhausen and looks back on his various schools warmly as having provided a conducive environment. His schoolwork also left him time for other activities. For one, he pursued a career as a boy scout which he crowned by attaining the position of Rover Commissary of all Thurgovia. For another, he was an avid client of the municipal library of Schaffhausen. One book which he found there was Hilbert-Bernays' ‘Grundlagen der Mathematik’. One wonders what Erwin would have said if a soothsayer had told him that the author's own copy would one day be passed on to him by the late Bernays' family.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Classical model theory and infinitary languages

[1]Untersuchungen zur Modelltheorie. Diss. ETH (1958).Google Scholar
]2]n-Tupeln, Äquivalenzklassen von. Z. Math. Logik Grundl. Math. 5 (1959) 340345.Google Scholar
[3]Modellerweiterungen, Eine Konstruktion Von. Z. Math. Logik Grundl. Math. 5 (1959) 126131.Google Scholar
]4]Modelltheorie, Unendliche formeln in der. Z. Math. Logik Grundal. Math. 7 (1961) 154160.Google Scholar
]5]Formeln, Zur Beweistheorie von Sprachen mit unendlich langen. Z. Math. Logik Grundl. Math. 7 (1961) 213218.Google Scholar
]6]A reduction principle for infinite formulas. Mathem. Annalen 151 (1963) 296303.CrossRefGoogle Scholar

2. Categories in model theory

]7]Models with prescribed second-order properties. J. Symbolic Logic 27 (1962) 476.Google Scholar
]8]Combinatorial theorems for the construction of models. In: The Theory of Models. Proc 1963 Int. Symp., eds Addison, J. W. et al. (North-Holland: Amsterdam, 1965) pp. 7788.Google Scholar
]9]Categories of mapping filters. In: Conf. Categorical Algebra, ed. Eilenberg, S. et al. (Springer: New York, 1966) pp. 247253.CrossRefGoogle Scholar
]10]On structures defined by mapping filters. Math. Annalen 167 (1966) 105112.CrossRefGoogle Scholar
]11]On the structure of elementary maps. Z. Math. Logik u. Grundl. d. Math. 13 (1967) 323328.Google Scholar
]12](with Röhrl, H.) On the problem of foundations of category theory. Dialectica 23 (1969) 5866.Google Scholar

3. Algorithmic properties of structures and logics of programs

]13]Algorithmic properites of structures. Math. Systems Theory 1 (1967) 183195.CrossRefGoogle Scholar
]14]*Formal Languages: Automatat and Structures. (Markham: Chicago, 1968.)Google Scholar
]15]Remarks on the theory of geometrical constructions. In: Syntax & Semantics of Inf. Lang., ed. Barwise, J., Springer Lecture Notes in Mathematics 72 (Springer: New York, 1968) pp. 6476.Google Scholar
]16]Proof theory and the accuracy of compuattions. In: Symp. Automatic Demonstr., eds Laudet, M. et al. , Springer Lecture Notes in Mathematics 125 (Springer: New York 1970) pp. 64–76.Google Scholar
]17]Algorithmic approximations. J. Comput. Systems Sci. 5 (1971) 6782.CrossRefGoogle Scholar
]18]Structure and meaning of elemenatry programs. Symp. Sem. of Alg. Lang. Springer Lectures Notes in Mathematics 188 (Springer: New York, 1971) pp. 89101.Google Scholar
]19]*(ed.) Symposium on Semantics of Algor. Languages. Springer Lecture Notes in Mathematics 188 (Springer: New York, 1971).Google Scholar
]20]*Introduction to the Theory of Computation. (Academic Press: New York, 1973). Transl. into Japanese 1975).Google Scholar
]21]The logic of ‘can do’, Logic of Programming. In: Int. Symp. on Theoretical Computer Science, eds Ershov, A. et al. , springer Lecture Notes in Computer Science 5 (1974) pp. 1728.Google Scholar
]22]Algorithmic logic. Math. Center Tracts 63 (1975) 5785.Google Scholar
]23]*(ed.) Logic of Programs. Springer Lecture Notes in Computer Science 125 (Springer: New York, 1981.).Google Scholar
]24]Logic in Computer Science. In: Information Processing 86, ed. Kugler, H. J. (North-Holland, Amsterdam, 1986), 393.Google Scholar

4. Galois-connections and the structure of programs

]25]On the structure of algorithmic problems. GI Fachtagung über Automatentheorie und formale Sprachen. Springer Lecture Notes in Computer Science 2 (Springer: New York, 1973) pp. 215.Google Scholar
]26]Towards a Galois theory of algorithmic problems. Math. Found. of Comp. Sc., eds Becvár, J. et al. , (Slovac Academy of Science: 1973) pp. 5155.Google Scholar
]27]On the solvability of algorithmic problems. Logic Collequium 73 eds, Rose, H. E. et al. (North-Holland, Amsterdam, 1975), pp. 231251.Google Scholar
]28]Lower bounds by Galois theory. Asterisque 38 (1976) 4552.Google Scholar
]29]Structural relations between programs and problems. Int. Congr. Logic Math. & Phil. Sci. London Ont. 1975, Logic, Found. of Math. and Computability, eds Butts, et al. (Reidel: Dordrecht, 1977) pp. 267280.Google Scholar
]30]Generalized Galois theory and its applicaton to complexity. Theoret. Comput. Sci. 13 (1981) 271293.CrossRefGoogle Scholar

5. Foundations and philosophy of science

]31]Geometry and language. Dialectica 24 (1970) 7785.CrossRefGoogle Scholar
]32]*Metamathematik der Elementarmathematik. (Springer: New York, 1983.)Google Scholar
[32a](Transl. into Russian 1987, Transl. into English and into Chinese in preparation).Google Scholar
]33]Zum logischen Werk von Paul Bernays. Dialectica 32 (1978) 191200.CrossRefGoogle Scholar
]34]An algorthmc model of strict finitism. Colloq. math. J. Bolyai (1978) 345–357.Google Scholar
]35]Grundlagenrhetorik, Die Skepsis der Mathematiker gegenüber der. In: Wozu Wissenschaftsphilosophie eds Hoyningen-Huene, P. et al. (de Gruyter, 1988) pp. 310313.Google Scholar
]36]Algebra, Zur wissenschaftstheoretischen Bedeutung der kombinatorischen. In: Jahrbuch der Kuri Gödel Gesellschaft (Wien 1990).Google Scholar
]37]The technical problem of ‘full abstractness’ as a model for an issue in reductionism. In: The Problem of Symposium on Reductonism in Science, ed. Agazzi, E. (Kluwer, 1991) pp. 91–99.CrossRefGoogle Scholar

6. Combinatory algebra as a functional structure for mathematics

]38]A new type of models of computation. Math. Found. Comp. Sci., ed. Gruska, J., Springer Lecture Notes in Computer Science 53 (Springer: New York, 1977) pp. 5258.Google Scholar
]39]Formal models of computation in which data are processes: theory and applications. Int. Conf. Math. Stud. Info. Proc. Kyoto (1978) pp. 541–558.Google Scholar
]40]Algebras and combinators. Algebra Universals 13 (1981) 389392.CrossRefGoogle Scholar
]41]Equations in combinatory algebras. In: Logics of Programs, eds Clarke, E. et al. , Springer Lecture Notes in Computer Science 164 (Springer: New York, 1984) pp. 193205.Google Scholar
]42]Modelling of cooperative processes. In: Comput. Theory and Logic, ed Börger, E., Springer Lecture Notes in Computer Science 270 (Springer: New York, 1987) pp. 143153.Google Scholar
]43]Cumulative type logic programs and midelling. J. symbolic Logic 52 (1987) 1059.Google Scholar
]44]Cumulative logic programs and modelling. In: Logic Colloquium 1986, eds Drake, F. R. et al. (North-Holland, Amsterdam, 1988) pp. 8393.Google Scholar
]45]Modelling interacting intelligent systems in the legal context. Neue Methodem im Recht 5 (1988).Google Scholar
]46]Representation of Varieties in combinatory algebras. Neue Methoden im Recht 25 (1988) 8595.Google Scholar
]47]A new discipline of modelling. Report ETH Zürich (1988).Google Scholar
]48]Combinatory differential fields. Theore. Comput. Sci. 72 (1990) 119131.CrossRefGoogle Scholar

7. Miscellaneous publications

]49]Analogie-Rechengerät ARZ. Anleitung, Güttinger Niederteufen (1956).Google Scholar
]50]Über der Monte-Carlo Methode. Mitt. Schweiz. Vers.-math. 58 (1958) 6776.Google Scholar
]51]Lineares Programmieren. Mitteilungsblatt Nr. 4 (Güttinger, 1958.Google Scholar
]52](with Speiser, A. P.). Zur Analogie zwischen einer elektronischen Rechenmaschine und dem Gehirn. Vierteljahresschr. d. Natf. Gesellsch. in Zürich 109 (1958) 8184.Google Scholar
]53]Über elektr. Analogierechenanlagen für chem. & biol. Vorgänge. Jahrbuch Chem. Industrie 1958/59, 92–95.Google Scholar
]54](with Mäder, R.). Scientific Computation: The Integration of Symbolic, numeric and graphic Computation. In: Eurocal'85, ed. Bchberger, B., Springer Lecture Notes in Computer Science 203 (Springer: New York, 1985) pp. 185200.Google Scholar
]55]Goals and design consideration for a mathematical laboratory. SIGSAM Bulletin 21 (1987) 78.CrossRefGoogle Scholar
]56]Grenzen—des Computers? (= Introduction to) Grenzen des Computers, ed. Schnell, C. (Sauer: 1991).Google Scholar