No CrossRef data available.
Article contents
Effective metric model theory
Published online by Cambridge University Press: 24 November 2014
Abstract
This paper is a further investigation of a project carried out in Didehvar and Ghasemloo (2009) to study effective aspects of the metric logic. We prove an effective version of the omitting types theorem. We also present some concrete computable constructions showing that both the separable atomless probability algebra and the rational Urysohn space are computable metric structures.
- Type
- Paper
- Information
- Mathematical Structures in Computer Science , Volume 25 , Special Issue 8: Computing with Infinite Data: Topological and Logical Foundations Part 2 , December 2015 , pp. 1779 - 1798
- Copyright
- Copyright © Cambridge University Press 2014
References
Ben Yaacov, I. and Pedersen, A. P. (2010) A proof of completeness for continuous first order logic. Journal of Symbolic Logic
75
(1)
168–190.Google Scholar
Ben Yaacov, I. and Usvyatsov, A. (2007) On d-finiteness in continous structures. Fundamenta Mathematicae
194
67–88.CrossRefGoogle Scholar
Ben Yaacov, I., Usvyatsov, A., Henson, C. W and Berenstein, A. (2008) Model theory for metric structures, model theory with applications to algebra and analysis. In: Chatzidakis, Z., Macpherson, D., Pillay, A. and Wilkie, A. (eds.) London Mathematical Society lecture Note Series 350 Volume 2
315–427.Google Scholar
Chang, C. C. and Keisler, H. J. (1966) Continuous Model Theory, Princeton University Press.CrossRefGoogle Scholar
Didehvar, F., Ghasemloo, K. and Pourmahdian, M. (2009) Effectiveness in RPL, with applictions in continuous logic. Annals of Pure and Applied Logic, Elsevier.Google Scholar
Grubba, T., Weihrauch, K. and Xu, Y. (2008) Effectivity on continuous functions in topological spaces. In: Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K. and Zhong, N. (eds.) Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (CCA 2007). Electronic Notes in Theoretical Computer Science
202
3–12. (Elsevier. CCA 2007, Siena, Italy, June 16–18, 2007.)CrossRefGoogle Scholar
Harizanov, V. (1998) Pure computable model theory. In: Ershov, Yu. L., Goncharov, S. S., Nerode, A. and Remmel, J. B. (eds.) Handbook of Recursive Mathematics, Elsevier.Google Scholar
Harizanov, V., Csima, B., Miller, R. and Montalban, A. (2011) Computability of Fraïssé limit. Journal of Symbolic Logic
76
(1)
66–93.Google Scholar
Miller, T. S. (1998) Pure recursive model theory. In: Griffor, E. R. (ed.) Handbook of Computability Theory, Elsevier, Chapter 15, 507–532.Google Scholar
Usvyatsov, A. (2008) Generic separable metric structures. Topology and its Applications
155
1607–1617.CrossRefGoogle Scholar