Published online by Cambridge University Press: 06 February 2020
The homotopical Squier’s theorem relates rewriting properties of a presentation of a monoid with homotopical invariants of this monoid. This theorem has since been extended by Guiraud and Malbos, yielding a so-called polygraphic resolution of a monoid starting from a presentation with suitable rewriting properties. In this article, we argue that cubical categories are a more natural setting in which to express and possibly extend Guiraud and Malbos construction. As a proof-of-concept, we give a new proof of Squier’s homotopical theorem using cubical categories.