Published online by Cambridge University Press: 23 March 2022
We show how concurrent quantales and concurrent Kleene algebras arise as convolution algebras of functions from relational structures with two ternary relations that satisfy relational interchange laws into concurrent quantales or Kleene algebras, among others. The elements of the quantales can be understood as weights; the case where weights are drawn from the booleans corresponds to languages. We develop a correspondence theory between properties of the relational structures and algebraic properties in the weight and convolution algebras in the sense of modal and substructural logics, or boolean algebras with operators. The resulting correspondence triangles yield in particular general construction principles for models of concurrent quantales and Kleene algebras as convolution algebras from much simpler relational structures, including weighted ones for quantitative applications. As examples, we construct the concurrent quantales and Kleene algebras of weighted words, digraphs, posets, isomorphism classes of finite digraphs and pomsets.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.