Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T07:31:52.009Z Has data issue: false hasContentIssue false

Complexity of chaos and quantum computation

Published online by Cambridge University Press:  01 December 2007

BERTRAND GEORGEOT*
Affiliation:
Laboratoire de Physique Théorique, Université Toulouse III, CNRS, 31062 Toulouse, France Email: [email protected]

Abstract

This paper reviews recent work related to the interplay between quantum information and computation on the one hand and classical and quantum chaos on the other.

First, we present several models of quantum chaos that can be simulated efficiently on a quantum computer. Then a discussion of information extraction shows that such models can give rise to complete algorithms including measurements that can achieve an increase in speed compared with classical computation. It is also shown that models of classical chaos can be simulated efficiently on a quantum computer, and again information can be extracted efficiently from the final wave function. The total gain can be exponential or polynomial, depending on the model chosen and the observable measured. The simulation of such systems is also economical in the number of qubits, allowing implementation on present-day quantum computers, some of these algorithms having been already experimentally implemented.

The second topic considered concerns the analysis of errors on quantum computers. It is shown that quantum chaos algorithms can be used to explore the effect of errors on quantum algorithms, such as random unitary errors or dissipative errors. Furthermore, the tools of quantum chaos allows a direct analysis of the effects of static errors on quantum computers. Finally, we consider the different resources used by quantum information, and show that quantum chaos has some precise consequences on entanglement generation, which becomes close to maximal. For another resource, interference, a proposal is presented for quantifying it, enabling a discussion on entanglement and interference generation in quantum algorithms.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, S. (1990) Onset of chaos in rapidly rotating nuclei. Phys. Rev. Lett. 64 31193122.CrossRefGoogle ScholarPubMed
Abrams, D. S. and Lloyd, S. (1999) Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors. Phys. Rev. Lett. 83 51625165.CrossRefGoogle Scholar
Bandyopadhyay, J. N and Lakshminarayan, A. (2002) Testing Statistical Bounds on Entanglement Using Quantum Chaos. Phys. Rev. Lett. 89 060402.CrossRefGoogle ScholarPubMed
Benenti, G., Casati, G., Montangero, S. and Shepelyansky, D. L. (2001) Efficient quantum computing of complex dynamics. Phys. Rev. Lett. 87 227901.CrossRefGoogle ScholarPubMed
Benenti, G., Casati, G., Montangero, S. and Shepelyansky, D. L. (2002) Eigenstates of operating quantum computer: hypersensitivity to static imperfections. Eur. Phys. J. D 20 293296.CrossRefGoogle Scholar
Benenti, G., Casati, G., Montangero, S. and Shepelyansky, D. L. (2003) Dynamical localization simulated on a few qubits quantum computer. Phys. Rev. A 67 052312.CrossRefGoogle Scholar
Benenti, G., Casati, G. and Strini, G. (2004) Principles of quantum computation and information, World Scientific.CrossRefGoogle Scholar
Berman, G. P., Borgonovi, F., Izrailev, F. M. and Tsifrinovich, V. I. (2001) Avoiding quantum chaos in quantum computation. Phys. Rev. E 65 015204.CrossRefGoogle ScholarPubMed
Berry, M. V. and Tabor, M. (1977) Level clustering in the regular spectrum. Proc. R. Soc. London Ser. A 356 375394.Google Scholar
Bohigas, O., Giannoni, M.-J. and Schmit, C. (1984) Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws. Phys. Rev. Lett. 52 14.CrossRefGoogle Scholar
Brassard, G., Høyer, P., Mosca, M. and Tapp, A. (2002) Quantum Amplitude Amplification and Estimation. In: Lomonaco, S. J. Jr. and Brandt, H. E. (eds.) Quantum Computation and Quantum Information: A Millenium Volume, Contemporary Mathematics Series 305, AMS.Google Scholar
Braun, D. (2002) Quantum chaos and quantum algorithms. Phys. Rev. A 65 042317.CrossRefGoogle Scholar
Braun, D. and Georgeot, B. (2006) Quantitative measure of interference. Phys. Rev. A 73 022314.CrossRefGoogle Scholar
Emerson, J., Weinstein, Y. S., Lloyd, S. and Cory, D. G. (2002) Fidelity Decay as an Efficient Indicator of Quantum Chaos. Phys. Rev. Lett. 89 284102.CrossRefGoogle ScholarPubMed
Emerson, J., Weinstein, Y. S., Saraceno, M., Lloyd, S. and Cory, D. G. (2003) Pseudo-Random Unitary Operators for Quantum Information Processing. Science 302 2098.CrossRefGoogle ScholarPubMed
Feynman, R. P. (1986) Quantum mechanical computers. Found. Phys. 16 507.CrossRefGoogle Scholar
Flambaum, V. V. (2000) Time dynamics in chaotic many-body systems: can chaos destroy a quantum computer? Aust. J. Phys. 53 489.CrossRefGoogle Scholar
Frahm, K. M., Fleckinger, R. and Shepelyansky, D. L. (2004) Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections. Eur. Phys. J. D 29 139155.CrossRefGoogle Scholar
Georgeot, B. (2004) Quantum computing of Poincaré recurrences and periodic orbits. Phys. Rev. A 69 032301.CrossRefGoogle Scholar
Georgeot, B. and Shepelyansky, D. L. (2000a) Quantum chaos border for quantum computing. Phys. Rev. E 62 3504.CrossRefGoogle ScholarPubMed
Georgeot, B. and Shepelyansky, D. L. (2000b) Emergence of quantum chaos in the quantum computer core and how to manage it. Phys. Rev. E 62 6366.CrossRefGoogle Scholar
Georgeot, B. and Shepelyansky, D. L. (2001a) Exponential gain in quantum computing of quantum chaos and localization Phys. Rev. Lett. 86 28902893.CrossRefGoogle ScholarPubMed
Georgeot, B. and Shepelyansky, D. L. (2001b) Stable quantum computation of unstable classical chaos. Phys. Rev. Lett. 86 53935396.CrossRefGoogle ScholarPubMed
Georgeot, B. and Shepelyansky, D. L. (2002) Georgeot and Shepelyansky reply. Phys. Rev. Lett. 88 219802.CrossRefGoogle Scholar
Giraud, O. and Georgeot, B. (2005) Intermediate quantum maps for quantum computation. Phys. Rev. A 72 042312.CrossRefGoogle Scholar
Giraud, O., Georgeot, B. and Shepelyansky, D. L. (2005) Quantum computing of delocalization in small-world networks. Phys. Rev. E 72 036203.CrossRefGoogle ScholarPubMed
Grover, L. K. (1997) Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 79 325328.CrossRefGoogle Scholar
Gutzwiller, M. C. (1990) Chaos in Classical and Quantum Mechanics, Springer.CrossRefGoogle Scholar
Henry, M. K., Emerson, J., Martinez, R. and Cory, D. G. (2006) Localization in the quantum sawtooth map emulated on a quantum information processor. Phys. Rev. A 74 062317.CrossRefGoogle Scholar
Jacquod, P. and Shepelyansky, D. L. (1997) Emergence of Quantum Chaos in Finite Interacting Fermi Systems. Phys. Rev. Lett. 79 18371840.CrossRefGoogle Scholar
Kern, O., Alber, G. and Shepelyansky, D. L. (2005) Quantum error correction of coherent errors by randomization. Eur. Phys. J. D 32 153156.CrossRefGoogle Scholar
Kitaev, A. (1995) Quantum measurements and the Abelian Stabilizer Problem. Preprint quant-ph/9511026.Google Scholar
Lages, J. and Shepelyansky, D. L. (2006) Suppression of quantum chaos in a quantum computer hardware. Phys. Rev. E 74 026208.CrossRefGoogle Scholar
Lee, J. W. and Shepelyansky, D. L. (2005) Quantum chaos algorithms and dissipative decoherence with quantum trajectories. Phys. Rev. E 71 056202.CrossRefGoogle ScholarPubMed
Lévi, B. and Georgeot, B. (2004) Quantum Computation of a Complex System: the Kicked Harper Model. Phys. Rev. E 70 056218.CrossRefGoogle ScholarPubMed
Lévi, B., Georgeot, B. and Shepelyansky, D. L. (2003) Quantum computing of quantum chaos in the kicked rotator model. Phys. Rev. E 67 046220.CrossRefGoogle ScholarPubMed
Lichtenberg, A. and Lieberman, M. (1992) Regular and Chaotic Dynamics, Springer.CrossRefGoogle Scholar
Lloyd, S. (1996) Universal quantum simulators. Science 273 10731078.CrossRefGoogle ScholarPubMed
Maity, K. and Lakshminarayan, A. (2006) Quantum chaos in the spectrum of operators used in Shor's algorithm. Phys. Rev. E 74 035203.CrossRefGoogle ScholarPubMed
Mejia-Monasterio, C., Benenti, G., Carlo, G. G. and Casati, G. (2005) Entanglement across a transition to quantum chaos. Phys. Rev. A 71 062324.CrossRefGoogle Scholar
Miquel, C., Paz, J. P., Saraceno, M., Knill, E., Laflamme, R. and Negrevergne, C. (2002) Tomography and spectroscopy as quantum computations. Nature 418 59.CrossRefGoogle Scholar
Nielsen, M. A. and Chuang, I. L. (2000) Quantum computation and quantum information, Cambridge University Press.Google Scholar
Ott, E. (1993) Chaos in Dynamical Systems, Cambridge University Press.Google Scholar
Paz, J. P., Roncaglia, A. J. and Saraceno, M. (2004) Quantum algorithms for phase space tomography. Phys. Rev. A 69 032312.CrossRefGoogle Scholar
Pomeransky, A. A. and Shepelyansky, D. L. (2004) Quantum computation of the Anderson transition in the presence of imperfections. Phys. Rev. A 69 014302.CrossRefGoogle Scholar
Pomeransky, A. A., Zhirov, O. V. and Shepelyansky, D. L. (2004) Phase diagram for the Grover algorithm with static imperfections. Eur. Phys. J. D 31 131135.CrossRefGoogle Scholar
Poulin, D., Laflamme, R., Milburn, G. and Paz, J. P. (2003) Testing integrability with a single bit of quantum information. Phys. Rev. A 68 022302.CrossRefGoogle Scholar
Preskill, J. (1998) Quantum information and computation. Webcourse available at http://www.theory.caltech.edu/people/preskill/ph229/.Google Scholar
Ryan, A. C., Emerson, J., Poulin, D., Negrevergne, C. and Laflamme, R. (2005) Characterization of Complex Quantum Dynamics with a Scalable NMR Information Processor. Phys. Rev. Lett. 95 250502.CrossRefGoogle ScholarPubMed
Schack, R. (1998) Using a quantum computer to investigate quantum chaos. Phys. Rev. A 57 1634.CrossRefGoogle Scholar
Scott, A. and Caves, C. (2003) Entangling power of the quantum baker's map. J. Phys. A 36 9553.CrossRefGoogle Scholar
Shor, P. W. (1994) Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. In: Goldwasser, S. (ed.) Proc. 35th Annu. Symp. Foundations of Computer Science, IEEE Computer Society.Google Scholar
Song, P. H. and Shepelyansky, D. L. (2001) Quantum computing of quantum chaos and imperfection effects. Phys. Rev. Lett. 86 21622165.CrossRefGoogle ScholarPubMed
Steane, A. (1998) Quantum Computing. Rep. Progr. Phys. 61 117.CrossRefGoogle Scholar
Terraneo, M., Georgeot, B. and Shepelyansky, D. L. (2003) Strange attractor simulated on a quantum computer. Eur. Phys. J. D 22 127130.CrossRefGoogle Scholar
Terraneo, M., Georgeot, B. and Shepelyansky, D. L. (2005) Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment. Phys. Rev. E 71 066215.CrossRefGoogle Scholar
Weinstein, Y. S. and Hellberg, C. S. (2005) Entanglement Generation of Nearly Random Operators. Phys. Rev. Lett. 95 030501.CrossRefGoogle ScholarPubMed
Zhirov, O. V. and Shepelyansky, D. L. (2006) Dissipative decoherence in the Grover algorithm. Eur. Phys. J. D 38 405408.CrossRefGoogle Scholar