Hostname: page-component-599cfd5f84-jhfc5 Total loading time: 0 Render date: 2025-01-07T07:27:43.873Z Has data issue: false hasContentIssue false

Category-based constraint logic

Published online by Cambridge University Press:  01 June 2000

RĂZVAN DIACONESCU
Affiliation:
Japan Advanced Institute for Science and Technology. Email: [email protected]

Abstract

The research reported in this paper exploits the view of constraint programming as computation in a logical system, namely constraint logic. The basic ingredients of constraint logic are: constraint models for the semantics (they form a comma-category over a fixed model of ‘built-ins’); generalized polynomials in the role of basic syntactic ingredient; and a constraint satisfaction relation between semantics and syntax. Category-based constraint logic means the development of the logic is abstract categorical rather than concrete set theoretical.

We show that (category-based) constraint logic is an institution, and we internalize the study of constraint logic to the abstract framework of category-based equational logic, thus opening the door for considering constraint logic programming over non-standard structures (such as CPO's, topologies, graphs, categories, etc.). By embedding category-based constraint logic into category-based equational logic, we integrate the constraint logic programming paradigm into (category-based) equational logic programming. Results include completeness of constraint logic deduction, a novel Herbrand theorem for constraint logic programming characterizing Herbrand models as initial models in constraint logic, and logical foundations for the modular combination of constraint solvers based on amalgamated sums of Herbrand models in the constraint logic institution.

Type
Research Article
Copyright
2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)