Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T06:01:27.670Z Has data issue: false hasContentIssue false

Bounded minimalisation and bounded counting in argument-bounded idc's

Published online by Cambridge University Press:  27 October 2010

MATHIAS BARRA*
Affiliation:
Department of Mathematics, University of Oslo, P.B. 1053, Blindern, 0316 Oslo, Norway Email: [email protected]

Abstract

We define and investigate a number of small inductively defined classes (idc's), à la Gregorczyk, that are based on argument-bounded initial functions and the bounded minimalisation and bounded counting schemata. We establish equivalences between these and other classes in the literature, with an emphasis on minimalism. We also obtain characterisations of the classes in terms of well-known fragments of first-order predicate logic.

Type
Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barra, M. (2008) A characterisation of the relations definable in Presburger Arithmetic. In: Theory and Applications of Models of Computation (Proceedings of the 5th Int. Conf. TAMC 2008, Xi'an, China, 25–29 April). Springer-Verlag Lecture Notes in Computer Science 4978 258269.CrossRefGoogle Scholar
Bennett, J. H. (1962) On Spectra, Ph.D. thesis, Princeton University.Google Scholar
Clote, P. (1996) Computation Models and Function Algebra. In: Handbook of Computability Theory, Elsevier.Google Scholar
Enderton, H. B. (1972) A mathematical introduction to logic, Academic Press.Google Scholar
Esbelin, H.-A. (1994) Une classe minimale de fonctions recursives contenant les relations rudimentaires (in French). C. R. Acad. Sci. Paris Série I 319 (5)505508.Google Scholar
Esbelin, H.-A. and More, M. (1998) Rudimentary relations and primitive recursion: a toolbox. Theoretical Computer Science 193 (1-2)129148.Google Scholar
Grzegorczyk, A. (1953) Some classes of recursive functions. Rozprawy Matematyczne No. IV.Google Scholar
Harrow, K. (1973) Sub-elementary classes of functions and relations, Ph.D. Thesis, New York University.Google Scholar
Harrow, K. (1975) Small Grzegorczyk classes and limited minimum. Zeitscr. f. math. Logik und Grundlagen d. Math. 21 417426.Google Scholar
Jones, N. D. (1999) logspace and ptime characterized by programming languages. Theoretical Computer Science 228 151174.CrossRefGoogle Scholar
Jones, N. D. (2001) The expressive power of higher-order types, or life without CONS. J. Functional Programming 11 5594.CrossRefGoogle Scholar
Kristiansen, L. (2005) Neat function algebraic characterizations of logspace and linspace. Computational Complexity 14 (1)7288.Google Scholar
Kristiansen, L. (2006) Complexity-Theoretic Hierarchies Induced by Fragments of Gödel's T. Theory of Computing Systems (Available at http://www.springerlink.com/content/e53l54627x063685/).Google Scholar
Kristiansen, L. and Barra, M. (2005) The small Grzegorczyk classes and the typed λ-calculus, In: New Computational Paradigms. Springer-Verlag Lecture Notes in Computer Science 3526 252262.Google Scholar
Kristiansen, L. and Voda, P. J. (2003a) The surprising power of restricted programs and Gödel's functionals. In: Computer Science Logic. Springer-Verlag Lecture Notes in Computer Science 2803 345358.CrossRefGoogle Scholar
Kristiansen, L. and Voda, P. J. (2003b) Complexity classes and fragments of C. Information Processing Letters 88 213218.Google Scholar
Kristiansen, L. and Voda, P. J. (2008) The structure of Detour Degrees. In: Theory and Applications of Models of Computation (Proceedings of the 5th Int. Conf. TAMC 2008, Xi'an, China, 25–29 April). Springer-Verlag Lecture Notes in Computer Science 4978 148159.CrossRefGoogle Scholar
Lipton, R. J. (1979) Model theoretic aspects of computational complexity. In: Proc. 19th Annual Symp. on Foundations of Computer Science, IEEE Computer Society 193200.Google Scholar
Paris, J. and Wilkie, A. (1985) Counting problems in bounded arithmetic In: Proceedings, Methods in mathematical logic, Caracas 1983. Springer-Verlag Lecture Notes in Mathematics 1130 317340.Google Scholar
Presburger, M. (1930) Über die Vollständigket eines gewissen Systems der Arithmetik ganzer Zahlen in welchem die Addition als einzige Operation hervortritt. In: Sprawozdanie z I Kongresu Matematyków Słowańskich 92–101.Google Scholar
Presburger, M. and Jaquette, D. (1991) On the Completeness of a Certain System of Arithmetic of Whole Numbers in Which Addition Occurs as the Only Operation. History and Philosophy of Logic 12 225233.CrossRefGoogle Scholar
Smullyan, R. M. (1961) Theory of formal systems (revised edition), Princeton University Press.CrossRefGoogle Scholar
Schweikardt, N. (2005) Arithmetic, First-Order Logic, and Counting Quantifiers. ACM Trans. Comp. Log. 6 (3)634671.CrossRefGoogle Scholar
Wrathall, C. (1978) Rudimentary predicates and relative computation. SIAM J. Comput. 7 (2)194209.CrossRefGoogle Scholar