Published online by Cambridge University Press: 01 October 1997
Domain-theoretic categories are axiomatised by means of categorical non-order-theoretic requirements on a cartesian closed category equipped with a commutative monad. In this paper we prove an enrichment theorem showing that every axiomatic domain-theoretic category can be endowed with an intensional notion of approximation, the path relation, with respect to which the category Cpo-enriches.
Our analysis suggests more liberal notions of domains. In particular, we present a category where the path order is not ω-complete, but in which the constructions of domain theory (such as, for example, the existence of uniform fixed-point operators and the solution of domain equations) are available.