Article contents
Addendum to ‘The Katětov construction modified for a T0-quasi-metric space’
Published online by Cambridge University Press: 12 November 2014
Abstract
It is known that if K is a compact subset of the (separable complete) metric Urysohn space (${\mathbb U}$, d) and f is a Katětov function on the subspace K of (${\mathbb U}$, d), then there is z ∈ ${\mathbb U}$ such that d(z, x) = f(x) for all x ∈ K.
Answering a question of Normann, we show in this article that the supseparable bicomplete q-universal ultrahomogeneous T0-quasi-metric space (q${\mathbb U}$, D) recently discussed by the authors satisfies a similar property for Katětov function pairs on subsets that are compact in the associated metric space (q${\mathbb U}$, Ds).
- Type
- Paper
- Information
- Mathematical Structures in Computer Science , Volume 25 , Special Issue 8: Computing with Infinite Data: Topological and Logical Foundations Part 2 , December 2015 , pp. 1685 - 1691
- Copyright
- Copyright © Cambridge University Press 2014
References
- 2
- Cited by