Published online by Cambridge University Press: 01 February 2008
The Symmetric Circulant Travelling Salesman Problem asks for the minimum cost tour in a symmetric circulant matrix. The computational complexity of this problem is not known – only upper and lower bounds have been determined. This paper provides a characterisation of the two-stripe case. Instances where the minimum cost of a tour is equal to either the upper or lower bound are recognised. A new construction providing a tour is proposed for the remaining instances, and this leads to a new upper bound that is closer than the previous one.