Article contents
The theory of semi-functors
Published online by Cambridge University Press: 04 March 2009
Abstract
The notion of semi-functor was introduced in Hayashi (1985) in order to make possible a category-theoretical characterization of models of the non-extensional typed lambda calculus. Motivated by the further use of semi-functors in Martini (1987), Jacobs (1991) and Hoofman (1992a), (1992b) and (1992c), we consider the general theory of semi-functors in this paper. It turns out that the notion of semi natural transformation plays an important part in this theory, and that various categorical notions involving semi-functors can be viewed as 2-categorical notions in the 2-category of categories, semi-functors and semi natural transformations. In particular, we find that the notion of normal semi-adjunction as defined in Hayashi (1985) is the canonical generalization of the notion of adjunction to the world of semi-functors. Further topics covered in this paper are the relation between semi-functors and splittings, the Karoubi envelope construction, semi-comonads, and a semi-adjoint functor theorem.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1993
References
- 9
- Cited by