Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T05:36:51.604Z Has data issue: false hasContentIssue false

Theories of analytic monads

Published online by Cambridge University Press:  11 March 2014

STANISŁAW SZAWIEL
Affiliation:
Institute of Mathematics, University of Warsaw, S. Banacha 2, 02-097 Warszawa, Poland Email: [email protected]; [email protected]
MAREK ZAWADOWSKI
Affiliation:
Institute of Mathematics, University of Warsaw, S. Banacha 2, 02-097 Warszawa, Poland Email: [email protected]; [email protected]

Abstract

In this paper we characterise the categories of Lawvere theories and equational theories that correspond to the categories of analytic and polynomial monads on Set, and hence also to the categories of the symmetric and rigid operads in Set. We show that the category of analytic monads is equivalent to the category of regular-linear theories. The category of polynomial monads is equivalent to the category of rigid theories, that is, regular-linear theories satisfying an additional global condition. This solves a problem posed by A. Carboni and P. T. Johnstone. The Lawvere theories corresponding to these monads are identified via some factorisation systems. We also show that the categories of analytic monads and finitary endofunctors on Set are monadic over the category of analytic functors. The corresponding monad for analytic monads distributes over the monad for finitary endofunctors and hence the category of (finitary) monads on Set is monadic over the category of analytic functors. This extends a result of M. Barr.

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baez, J. and Dolan, J. (1998) Higher-dimensional algebra III: n-Categories and the algebra of opetopes. Advances in Mathematics 135 145206.CrossRefGoogle Scholar
Barr, M. (1970) Coequalizers and Free Triples. Mathematische Zeitschrift 116 307322.Google Scholar
Beck, J. (1969) Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and Categorical Homology Theory. Springer-Verlag Lecture Notes in Mathematics 80119–14.Google Scholar
Burroni, A. (1971) T-categories (catégories dans un triple). Cahiers de Topologie et Géométrie Différentielle Catégoriques 12 (3)215321.Google Scholar
Bojańczyk, M., Szawiel, S. and Zawadowski, M. (2014) Rigidity is undecidable. Mathematical Structures in Computer Science (to appear).Google Scholar
Carboni, A. and Johnstone, P. T. (1995) Connected limits, familial representability and Artin glueing. Mathematical Structures in Computer Science 5 441459.CrossRefGoogle Scholar
Carboni, A. and Johnstone, P. T. (2004) Corrigenda for ‘Connected limits, familial representability and Artin glueing’. Mathematical Structures in Computer Science 14 (1)185187.CrossRefGoogle Scholar
Carboni, A., Janelidze, G., Kelly, G. M. and Paré, P. (1997) On Localization and Stabilization for Factorization Systems. Applied Categorical Structures 5 158.Google Scholar
Freyd, P. and Kelly, G. M. (1972) Categories of continous functors I. Journal of Pure and Applied Algebra 2 169191.Google Scholar
Gould, M. R. (2010) Coherence for Categorified Operadic Theories. arXiv:1002.0879v1 [math.CT].Google Scholar
Hermida, C., Makkai, M. and Power, J. (2000) On weak higher dimensional categories I (Part 1). Journal of Pure and Applied Algebra 153 (2000) 221246.Google Scholar
Hermida, C., Makkai, M. and Power, J. (2001) On weak higher dimensional categories I (Part 2). Journal of Pure and Applied Algebra 157 247277.Google Scholar
Hermida, C., Makkai, M. and Power, J. (2002) On weak higher dimensional categories I (Part 3). Journal of Pure and Applied Algebra 166 83104.Google Scholar
Johnstone, P. T. and Wraith, G. C. (1978) Algebraic Theories in Toposes. In: Johnstone, P. T. and Paré, R. (eds.) Indexed Categories and Their Applications. Springer-Verlag Lecture Notes in Mathematics 661141242.Google Scholar
Joyal, A. (1986) Foncteurs analytiques et espéces de structures. In: Labelle, G. and Leroux, P. (eds.) Combinatoire énumerative. Springer-Verlag Lecture Notes in Mathematics 1234126159.Google Scholar
Kock, A. and Reyes, G. E. (1977) Doctrines in Categorical Logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics, North-Holland90283313.Google Scholar
Lawvere, F. W. (1963) Functorial Semantics of Algebraic Theories and Some Algebraic Problems in the context of Functorial Semantics of Algebraic Theories, Ph.D. thesis, Columbia University. (Reprinted in Theory and Applications of Categories (2004) 5 1–121.)CrossRefGoogle Scholar
Leinster, T. (2004) Higher Operads, Higher Categories, London Mathematics Society Lecture Note Series, Cambridge University Press.Google Scholar
Szawiel, S. and Zawadowski, M. (2010) Representing multicategories as monads. Talk at CT 2010, Genova. (Available at http://www.mimuw.edu.pl/~zawado/Talks/GenovaSlides.pdf.)Google Scholar
Szawiel, S. and Zawadowski, M. (2013a) Monads of regular theories. Applied Categorical Structures 1–48.Google Scholar
Szawiel, S. and Zawadowski, M. (2013b) The web monoid and opetopic sets. Journal of Pure and Applied Algebra 217 11051140.Google Scholar
Sienkiewicz, Ł. and Zawadowski, M. (2013) Weights for Objects of Monoids. arXiv:1306.3215 [math.CT].Google Scholar
Tronin, S. N. (2002) Abstract Clones and Operads. Siberian Mathematical Journal 43 (4)746755.Google Scholar
Zawadowski, M. (2011) Lax Monoidal Fibrations. In: Hart, B.et al. (eds.) Models, Logics, and Higher-Dimensional Categories: A Tribute to the Work of Mihály Makkai. CRM Proceedings, AMS 53341424.Google Scholar
Zawadowski, M. (2012) Formal Theory of Monoidal Monads. Journal of Pure and Applied Algebra 216 19321942.CrossRefGoogle Scholar